Browse > Article
http://dx.doi.org/10.4313/JKEM.2019.32.1.64

Investigation of Electron Thermally Induced Phase Transition in MAPbI3 Perovskite Solar Cells Using In-Situ XRD and TEM  

Choi, Jin-Seok (Department of Materials Science and Engineering, Chungnam National University)
Eom, Ji-Ho (Department of Materials Science and Engineering, Chungnam National University)
Yoon, Soon-Gil (Department of Materials Science and Engineering, Chungnam National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.32, no.1, 2019 , pp. 64-69 More about this Journal
Abstract
Methylammonium lead triiodide ($MAPbI_3$)-based perovskite solar cells potentially have potential advantages such as high efficiency and low-cost manufacturing procedures. However, $MAPbI_3$ is structurally unstable and has low phase-change temperatures ($30^{\circ}C$ and $130^{\circ}C$); it is necessary to solve these problems. We investigated the crystal structure and phase separation using real-time temperature-change X-ray diffraction, transmission electron microscopy, and electron energy loss spectroscopy. $MAPbI_3$ has a tetragonal structure, and at about $35^{\circ}C$ the c-axis contracts, transforming $MAPbI_3$ into the related cubic crystal structure. In addition, at $130^{\circ}C$, phase separation occurs in which $CH_3NH_2$ and HI at the center of the unit cell of the perovskite structure are extracted by gas, leavingand only $PbI_2$ of the three-component structure, is produced as the final solid product.
Keywords
$MAPbI_3$; In-situ XRD; TEM; EELS;
Citations & Related Records
연도 인용수 순위
  • Reference
1 N. K. Kim, Y. H. Min, S. Noh, E. Cho, G. Jeong, M. Joo, S. W. Ahn, J. S. Lee, S. Kim, K. Ihm, H. Ahn, Y. Kang, H. S. Lee, and D. Kim, Sci. Rep., 7, 4645 (2017). [DOI: https://doi.org/10.1038/s41598-017-04690-w]   DOI
2 M. Gratzel, Nat. Mater., 13, 838 (2014). [DOI: https://doi.org/10.1038/nmat4065]   DOI
3 Y. Zhao and K. Zhu, Chem. Soc. Rev., 45, 655 (2016). [DOI: https://doi.org/10.1039/C4CS00458B]   DOI
4 R. J. Sutton, G. E. Eperon, L. Miranda, E. S. Parrott, B. A. Kamino, J. B. Patel, M. T. Horantner, M. B. Johnston, A. A. Haghighirad, D. T. Moore, and H. J. Snaith, Adv. Energy Mater., 6, 1502458 (2016). [DOI: https://doi.org/10.1002/aenm.201502458]   DOI
5 G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, and H. J. Snaith, Energy Environ. Sci., 7, 982 (2014). [DOI: https://doi.org/10.1039/C3EE43822H]   DOI
6 B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D'Haen, L. D'Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F. D. Angelis, and H. G. Boyen, Adv. Energy Mater., 5, 1500477 (2015). [DOI: https://doi.org/10.1002/aenm.201500477]   DOI
7 M. Liu, M. B. Johnston, and H. J. Snaith, Nature, 501, 395 (2013). [DOI: https://doi.org/10.1038/nature12509]   DOI
8 Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, and J. Huang, Adv. Mater., 26, 6503 (2014). [DOI: https://doi.org/10.1002/adma.201401685]   DOI
9 Y. J. Kim, T. V. Dang, H. J. Choi, B. J. Park, J. H. Eom, H. A Song, D. Seol, Y. Kim, S. H. Shin, J. Nah, and S. G. Yoon, J. Mater. Chem. A, 4, 756 (2015). [DOI: https://doi.org/10.1039/C5TA09662F]   DOI
10 D. Weber, Z. Naturforsch., B: Chem. Sci., 33, 1443 (1978). [DOI: https://doi.org/10.1515/znb-1978-1214]   DOI
11 A. Poglitsch and D. Weber, J. Chem. Phys., 87, 6373 (1987). [DOI: https://doi.org/10.1063/1.453467]   DOI
12 S. Luo and W. A. Daoud, Materials, 9, 123 (2016). [DOI:https://doi.org/10.3390/ma9030123]   DOI
13 R. F. Egerton, P. Li, and M. Malac, Micron, 35, 399 (2004). [DOI: https://doi.org/10.1016/j.micron.2004.02.003]   DOI
14 S. B. Vendelbo, P. J. Kooyman, J. F. Creemer, B. Morana, L. Mele, P. Dona, B. J. Nelissen, and S. Helveg, Ultramicroscopy, 133, 72 (2013). [DOI: https://doi.org/10.1016/j.ultramic.2013.04.004]   DOI
15 C. Colliex, Science, 347, 611 (2015). [DOI: https://doi.org/10.1126/science.aaa5311]   DOI
16 R. F. Egerton, Micron, 34, 127 (2003). [DOI: https://doi.org/10.1016/S0968-4328(03)00023-4]   DOI
17 K. P. Ong, T. W. Goh, Q. Xu, and A. Huan, J. Phys. Chem. Lett., 6, 681 (2015). [DOI: https://doi.org/10.1021/jz502740d]   DOI
18 G. R. Kumar, A. D. Savariraj, S. N. Karthick, S. Selvam, B. Balamuralitharan, H. J. Kim, K. K. Viswanathan, M. Vijaykumarc, and K. Prabakar, Phys. Chem. Chem. Phys., 18, 7284 (2016). [DOI: https://doi.org/10.1039/C5CP06232B]   DOI
19 B. D. Cullity and S. R. Stock, Elements Of X-Ray Diffraction (Addition-Wesley, Boston, 1978) p. 26.
20 T. Supasai, N. Rujisamphan, K. Ullrich, A. Chemseddine, and T. Dittrich, Appl. Phys. Lett., 103, 183906 (2013). [DOI:https://doi.org/10.1063/1.4826116]   DOI