• 제목/요약/키워드: in situ physical properties

검색결과 131건 처리시간 0.026초

Novel Composite Membranes Comprising Silver Salts Physically Dispersed in Poly(ethylene-co-propylene) for the Separation of Propylene/Propane

  • Kim, Jong-Hak;Min, Byoung-Ryul;Kim, Yong-Woo;Kang, Sang-Wook;Won, Jong-Ok;Kang, Yong-Soo
    • Macromolecular Research
    • /
    • 제15권4호
    • /
    • pp.343-347
    • /
    • 2007
  • Novel composite membranes, which delivered high separation performance for propylene/propane mixtures, were developed by coating inert poly(ethylene-co-propylene) rubber (EPR) onto a porous polyester substrate, followed by the physical distribution of $AgBF_4$. Scanning electron microscopy-wavelength dispersive spectrometer (SEM-WDS) revealed that silver salts were uniformly distributed in the EPR layer. The physical dispersion of the silver salts in the inert polymer matrix, without specific interaction, was characterized by FT-IR and FT-Raman spectroscopy. The high separation performance was presumed to stem from the in-situ dissolution of crystalline silver ionic aggregates into free silver ions, which acted as an active propylene carrier within a propylene environment, leading to facilitated propylene transport through the membranes. The membranes were functional at all silver loading levels, exhibiting an unusually low threshold carrier concentration (less than 0.06 of silver weight fraction). The separation properties of these membranes, i.e. the mixed gas selectivity of propylene/propane ${\sim}55$ and mixed gas permeance ${\sim}7$ GPU, were stable for several days.

3D Hierarchical Heterostructure of TiO2 Nanorod/Carbon Layer/NiMn-Layered Double Hydroxide Nanosheet

  • Zhao, Wei;Jung, Hyunsung
    • 한국표면공학회지
    • /
    • 제51권6호
    • /
    • pp.365-371
    • /
    • 2018
  • 1D core-shell nanostructures have attracted great attention due to their enhanced physical and chemical properties. Specifically, oriented single-crystalline $TiO_2$ nanorods or nanowires on a transparent conductive substrate would be more desirable as the building core backbone. However, a facile approach to produce such structure-based hybrids is highly demanded. In this study, a three-step hydrothermal method was developed to grow NiMn-layered double hydroxide-decorated $TiO_2$/carbon core-shell nanorod arrays on transparent conductive fluorine-doped tin oxide (FTO) substrates. XRD, SEM, TEM, XPS and Raman were used to analyze the obtained samples. The in-situ fabricated hybrid nanostructured materials are expected to be applicable for photoelectrode working in water splitting.

I 형강 격자 상판의 피로 성능에 관한 실험적 연구 (Experimental Fatigue Performance of Concrete Slab with I-shaped Steel)

  • 박창규;김용곤;김철환;이재형;정영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.541-546
    • /
    • 2000
  • Recently, there have been increased mush concerns about repair and rehabilitation works for aged concrete structures to keep up with rapid economic growth in Korea since the early 1970's. In particular, it is believed in these days that there are significantly increasing number of aged concrete bridge slabs, which are strongly needed to construct and rehabilitate by innovative construction method. The objective of this research is to develop the new construction method of concrete slab in bridge structure, which can contribute to minimize the traffic congestion during the repair and rehabilitation works of aged concrete slab, and can also sufficiently assure the quality through the minimization of in-situ works at the site. I-beams with punch holes, which are substituted instead of main reinforcing steels in concrete slabs, will be manufactured in accordance with the specification in the factory, and will be preassembled into the panel. After erecting the preassembled panels in the site, concrete will be poured into the slab panel. This test is to investigate physical properties of I-Beam with punch holes itself, and then to investigate structural properties of assembled I-Beam panels through static and fatigue test, of which can be utilized for the development of new construction method of concrete slab in bridge structure.

  • PDF

I 형강 격자 상판에 대한 실험적 연구 (Experimental study for Concrete-filled I-beam Grid Slab)

  • 박창규;석윤호;김철환;김용곤;정영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.458-463
    • /
    • 2000
  • Recently, there are increasing much concerns about repair and rehabilitation works for aged Concrete Structures which had been constructed on around the 1970's for rapid economic growth in Korea. In particular, it is believed that there are many aged concrete slabs for Highway bridges in these days. Thus new construction method of concrete slabs are strongly needed to minimize the traffic congestion during the repair works. The objective of this research is to develop the new constructional method of concrete slab in bridge structure, which can contribute to minimize the traffic congestion to be occurred during the repair and rehabilitation works of aged concrete slab, and can also assure the reliable quality through the minimization of in-situ works at the site. I-beams with punch holes will be manufactured in accordance with the specification in the factory, and will be preassembled into the panel. After erecting the preassembled panels in the site, concrete will be poured into the slab panel. This research is to investigate physical properties of I-Beam with punch holes itself, and then to investigate structural properties of assembled I-Beam panels through static and fatigue test, of which result can be utilized for the development of the new constructional method for concrete slab in bridge structure.

  • PDF

Electroplating of Nickel on Nickel Titanate Modified Mild Steel Surface

  • Beenakumari, K.S.
    • Journal of Electrochemical Science and Technology
    • /
    • 제4권2호
    • /
    • pp.57-60
    • /
    • 2013
  • Nickel is a good electrocatalytic metal and nickel electrodes find many applications in different electrochemical fields. The nickel plated electrodes were prepared by electro-deposition technique on mild steel surface modified with in-situ deposition of nickel titanate. The SEM images shows that the nickel plating on nickel titanate modified mild steel shows better adherence than the nickel plating on bare mild steel surfaces. The extent of polarization of the nickel plating on mild steel with nickel titanate was lower than that of nickel plating on mild steel. The incorporation of nickel titanate on mild steel surface before nickel plating enhances physical, chemical and electrochemical properties of the plating film.

Growth of SiC Oxidation Protective Coating Layers on graphite substrates Using Single Source Precursors

  • Kim, Myung-Chan;Heo, Cheol-Ho;Park, Jin-Hyo;Park, Seung-Jun;Han, Jeon-Geon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1999년도 제17회 학술발표회 논문개요집
    • /
    • pp.122-122
    • /
    • 1999
  • Graphite with its advantages of high thermal conductivity, low thermal expansion coefficient, and low elasticity, has been widely used as a structural material for high temperature. However, graphite can easily react with oxygen at even low temperature as 40$0^{\circ}C$, resulting in CO2 formation. In order to apply the graphite to high temperature structural material, therefore, it is necessary to improve its oxidation resistive property. Silicon Carbide (SiC) is a semiconductor material for high-temperature, radiation-resistant, and high power/high frequency electronic devices due to its excellent properties. Conventional chemical vapor deposited SiC films has also been widely used as a coating materials for structural applications because of its outstanding properties such as high thermal conductivity, high microhardness, good chemical resistant for oxidation. Therefore, SiC with similar thermal expansion coefficient as graphite is recently considered to be a g행 candidate material for protective coating operating at high temperature, corrosive, and high-wear environments. Due to large lattice mismatch (~50%), however, it was very difficult to grow thick SiC layer on graphite surface. In theis study, we have deposited thick SiC thin films on graphite substrates at temperature range of 700-85$0^{\circ}C$ using single molecular precursors by both thermal MOCVD and PEMOCVD methods for oxidation protection wear and tribological coating . Two organosilicon compounds such as diethylmethylsilane (EDMS), (Et)2SiH(CH3), and hexamethyldisilane (HMDS),(CH3)Si-Si(CH3)3, were utilized as single source precursors, and hydrogen and Ar were used as a bubbler and carrier gas. Polycrystalline cubic SiC protective layers in [110] direction were successfully grown on graphite substrates at temperature as low as 80$0^{\circ}C$ from HMDS by PEMOCVD. In the case of thermal MOCVD, on the other hand, only amorphous SiC layers were obtained with either HMDS or DMS at 85$0^{\circ}C$. We compared the difference of crystal quality and physical properties of the PEMOCVD was highly effective process in improving the characteristics of the a SiC protective layers grown by thermal MOCVD and PEMOCVD method and confirmed that PEMOCVD was highly effective process in improving the characteristics of the SiC layer properties compared to those grown by thermal MOCVD. The as-grown samples were characterized in situ with OES and RGA and ex situ with XRD, XPS, and SEM. The mechanical and oxidation-resistant properties have been checked. The optimum SiC film was obtained at 85$0^{\circ}C$ and RF power of 200W. The maximum deposition rate and microhardness are 2$mu extrm{m}$/h and 4,336kg/mm2 Hv, respectively. The hardness was strongly influenced with the stoichiometry of SiC protective layers.

  • PDF

Poly-DCPD/실리케이트 나노복합재료의 제조 및 물리적, 기계적 물성 (Preparation of Poly-DCPD/Silicate Nanocomposites and Their Physical and Mechanical Properties)

  • 홍채환;송석우;남병욱;차봉준;김백진
    • 폴리머
    • /
    • 제30권4호
    • /
    • pp.311-317
    • /
    • 2006
  • 촉매 $WCl_6$를 사용하여 ROMP에 의한 poly-DCPD (PDCPD)를 제조하였고, 또한 poly-DCPD 내에 실리케이트를 분산시켜 poly-DCPD/실리케이트 나노복합체를 제조하였는데 나노복합재료 제조는 초음파 분산법을 적용하여 제조하였다. 유기화 처리를 하지 않은 $Na^+MMT$ 보다 유기화 처리를 하여 고분자와의 상용성을 증가시킨 CL 15A 가 매트릭스 내에 분산이 더 잘 되고 우수한 열적, 기계적 물성을 보이는 것을 확인하였으며 수분 차단 성도 높음을 확인하였다.

Effect of HTT on Bending and Tensile Properties of 2D C/C Composites

  • Dhakate, S.R.;Aoki, T.;Ogasawara, T.
    • Carbon letters
    • /
    • 제6권4호
    • /
    • pp.234-242
    • /
    • 2005
  • Bending and tensile properties of 2D cross-ply C/C composites with processing heat treatment temperature (HTT) are evaluated. C/C composites used are made from two types of PAN based T700 and M40 carbon fibers with phenolic resin as carbon matrix precursor. Both the types of composites are heat treated at different temperatures (ranging from 750 to $2800^{\circ}C$) and characterized for bending and tensile properties. It is observed that, real density and open porosity increases with HTT, however, bulk density does show remarkable change. The real density and open porosity are higher in case T-700 carbon fiber composites at $2800^{\circ}C$, even though the density of M40 carbon fiber is higher. Bending strength is considerably greater than tensile strength through out the processing HTT due to the different mode of fracture. The bending and tensile strength decreases in both composites on $1000^{\circ}C$ which attributed to decrease in bulk density, thereafter with increase in HTT, bending and tensile strength increases. The maximum strength is in T700 fiber based composites at HTT $1500^{\circ}C$ and in M40 fiber based composites at HTT $2500^{\circ}C$. After attending the maximum value of strength in both types of composite at deflection HTT, after that strength decreases continuously. Decrease in strength is due to the degradation of fiber properties and in-situ fiber damages in the composite. The maximum carbon fiber strength realization in C/C composites is possible at a temperature that is same of fiber HTT. It has been found first time that the bending strength more or less 1.55 times higher in T700 fiber composites and in M40 fiber composites bending strength is 1.2 times higher than that of tensile strength of C/C composites.

  • PDF

농업용 저수지 제체에서의 그라우팅 주입효과 확인방법의 검증 (Inspection Method Validation of Grouting Effect on an Agricultural Reservoir Dam)

  • 김형신;문성우;임국묵;서용석
    • 지질공학
    • /
    • 제31권3호
    • /
    • pp.381-393
    • /
    • 2021
  • 농업용 저수지 제체에 대한 그라우팅 주입효과 확인방법을 검증하기 위하여 물리·역학적 방법, 수리학적 방법, 지구물리학적 방법을 적용하여 결과를 분석하였다. 실내시험과 현장시험을 통하여 획득한 데이터들은 그라우팅 주입단계에 따라 ① 그라우팅 이전, ② 그라우팅 중 ③ 그라우팅 직후, ④ 그라우트재재령 28일 이후로 구분하여 획득되었다. 시추과정에서 획득되는 단위중량, 압축강도, 마찰각, 점착력, N값(관입저항치)의 경우 지반 개량을 확인할 수는 있지만, 지반의 불균질성에 기인하는 한계도 나타났다. 현장 투수시험으로 측정된 투수계수는 그라우트재가 고결되기 이전에도 차수성이 확인되어 그라우팅 직후에 저수지 제체의 개량효과를 확인하기에 가장 적합한 것으로 나타났다. 전기비저항탐사는 그라우팅 이전 저수지 제체에 발달하는 포화대와 누수영역 파악 활용에 적합하였다. 표면파탐사(MASW)는 그라우팅 주입 이후에 탄성파속도가 점차적으로 증가하는 경향성이 뚜렷하여 개량효과를 판단하는데 효과적인 것으로 판단되며, 탄성파 속도를 이용하여 동적특성을 산정할 수 있으므로 내진설계의 기초자료로 활용될 수 있을 것으로 기대된다.

암석의 미세균열의 발달과 분포의 예측방법에 관한 연구 (Study on the Prediction of the Occurrence and Distribution of the Microcracks in Rock)

  • 백환조;김덕현;최성범
    • 터널과지하공간
    • /
    • 제8권3호
    • /
    • pp.226-233
    • /
    • 1998
  • 자연적으로, 혹은 인위적으로 발생된 균열들은 현지암반의 공학적 거동에 대한 중요한 자료를 제공한다. 일정한 방향으로 분포하는 미세균열들은 암반의 물성에 현저한 영향을 미치게 되지만, 다른 요인들에 의한 이방성이 큰 경우에는 이들의 영향은 감소한다. 본 연구에서는 초음파속도의 이방성과 점하중 재하에 의한 인공균열의 진행방향을 기초로, 암석조직이 암석의 물성에 미치는 영향에 대하여 조사하였다. 암석시료는 우백질의 포천화강암 석재에서 코어링한 NX 시험편과 현장 시추코어를 사용하였다. 시료에 분포하는 균열들의 주 방향을 기준으로 설정한 후, 초음파속도의 이방성을 측정한 결과, 균열에 수직한 방향에서 초음파속도의 최소치가 측정되었다. 속도측정에 사용한 NX코어로부터 EX크기의 원판형 시험편을 성형한 수 점하중 재하실험을 수행하였으며, 점하중재하에 의한 인공균열의 진행방향은 기존의 미세균열의 방향과 거의 일치하였다.

  • PDF