Poly-DCPD/실리케이트 나노복합재료의 제조 및 물리적, 기계적 물성

Preparation of Poly-DCPD/Silicate Nanocomposites and Their Physical and Mechanical Properties

  • 홍채환 (현대자동차 연구개발본부 고분자재료연구팀) ;
  • 송석우 (한국기술교육대학교 응용화학공학부) ;
  • 남병욱 (한국기술교육대학교 응용화학공학부) ;
  • 차봉준 (명지대학교 환경생명공학부) ;
  • 김백진 (한국생산기술연구원 청정공정팀)
  • Hong Chae-Hwan (Hyundai-Kia Motors Co., Ltd.) ;
  • Song Suk-Woo (Department of Chemical Engineering, Korea University of Technology and Education) ;
  • Nam Byeong-Uk (Department of Chemical Engineering, Korea University of Technology and Education) ;
  • Cha Bong-Jun (Dept. of Environmental Eng. and Biotechnology, Myongji University) ;
  • Kim Baek-Jin (Korea Institute of Industrial Technology)
  • 발행 : 2006.07.01

초록

촉매 $WCl_6$를 사용하여 ROMP에 의한 poly-DCPD (PDCPD)를 제조하였고, 또한 poly-DCPD 내에 실리케이트를 분산시켜 poly-DCPD/실리케이트 나노복합체를 제조하였는데 나노복합재료 제조는 초음파 분산법을 적용하여 제조하였다. 유기화 처리를 하지 않은 $Na^+MMT$ 보다 유기화 처리를 하여 고분자와의 상용성을 증가시킨 CL 15A 가 매트릭스 내에 분산이 더 잘 되고 우수한 열적, 기계적 물성을 보이는 것을 확인하였으며 수분 차단 성도 높음을 확인하였다.

Poly-DCPD and poly-DCPD/silicates hybrids were prepared by in-situ ROMP poly-merization using $WCl_6$ catalyst. Good dispersion of silicates in DCPD medium can be accomplished by sonication method. Compared with nanocomposites prepared using $Na^+MMT$, the nanocomposites with CL 15A showed well dispersed silicate's morphology. superior thermal and mechanical properties. Additionally, well dispersed silicates in DCPD matrix enhanced the gas barrier property of the nanocomposites.

키워드

참고문헌

  1. G. Galgali, C. Ramesh, and A. Lele, Macromolecules, 34, 852 (2001) https://doi.org/10.1021/ma000565f
  2. J. Li, C. Zhou, G. Wang, and D. Zhao, J. Appl. Polym. Sci, 89, 3690 (2003)
  3. N. Hasegawa and A. Usuki, J. Appl. Polym. Sci, 93, 464 (2004) https://doi.org/10.1002/app.20459
  4. K. Ivin and J. Mol, Olefin metathesis and metathesis polymerization, London, Academic Press, 1997
  5. P. J. Hine, T. Leejarkpai, E. Khosravi, R. A. Duckett, and W. J. Feast, Polymer, 42, 9413 (2001) https://doi.org/10.1016/S0032-3861(01)00488-8
  6. H. Cho, Polymer Science and Technology, 12, 351 (2001)
  7. R. Michael, Chem. Rev., 100, 1565 (2000) https://doi.org/10.1021/cr990248a
  8. A. Della Martina, J. G. Hirborn, and A. Muhlebach, Macromolecules, 33, 2916 (2000) https://doi.org/10.1021/ma990953l
  9. Y. Chekanov and A. J. Pojman, Macromolecules, 34, 6539 (2000) https://doi.org/10.1021/ma0106999
  10. M. J. Abadie, M. Dimonie, C. Couve, and V. Dragutan, Eum. Polym. J., 36, 1213 (2000) https://doi.org/10.1016/S0014-3057(99)00185-8
  11. S. Hayano, H. Kurakata, Y. Tsunogae, Y. Nakayama, Y. Sato, and H. Yasuda, Macromolecules, 36, 7422 (2003) https://doi.org/10.1021/ma034611y
  12. G. C. Bazan, J. H. Oskam, H. N. Cho, L. Y. Park, and R. R. Schrock, J. Am. Chem. Soc., 113, 6899 (1991) https://doi.org/10.1021/ja00018a028
  13. J. H. Oskam, H. H. Fox, K. B. Yap, D. H. McConville, R. O'Dell, B. J. Lichtenstein, and R. R. Schrock, J. Oganomet. Chem 459, 185 (1993) https://doi.org/10.1016/0022-328X(93)86071-O
  14. J. H. Oskam and R. R. Schrock, J. Am. Chem. Soc., 115, 11813 (1993)
  15. P. Schwab, M. B. France, J. W. Ziller, and R. H. Grubbs, Angew. Chem., 34, 2039 (1996)
  16. P. Schwab, R. H. Grubbs, and J. W. Ziller, J. Am. Chem. Soc., 118, 100 (1996) https://doi.org/10.1021/ja952676d
  17. S. T. Nguyen and R. H. Grubbs, J. Am. Chem. Soc., 115, 9858 (1993) https://doi.org/10.1021/ja00074a086
  18. H. Cho, Polymer Science and Technology, 5, 227 (1994)
  19. Y. Mitra, T. Hossein, L. K. William, and U. P. Charles, Macromolecules, 37, 2511 (2004) https://doi.org/10.1021/ma0359483
  20. C. Hong, Y. Lee, J. Bae, J. Jho, B. Nam, G. Nam, and K. Lee, J. Appl. Polym. Sci., 97, 2375 (2005) https://doi.org/10.1002/app.21842