• 제목/요약/키워드: impedance study

검색결과 2,021건 처리시간 0.031초

Development of a Practical Two-Microphone Impedance Tube Method for Sound Transmission Loss Measurement of Sound Isolation Materials

  • Ro, Sing-Nam;Hwang, Yoon;Lee, Dong-Hoon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제11권3호
    • /
    • pp.105-113
    • /
    • 2003
  • This study developed a practical two-microphone impedance tube method to measure the sound transmission loss of sound isolation materials without the use of an expensive reverberation room or an acoustic intensity probe. In order to evaluate the validation and applicability of the two-microphone impedance tube method, sound transmission losses for several sound isolation materials with different surface density and bending stiffness were measured, and the measured values were compared with the results from the reverberation room method and the theory. From the experimental results, it was found that the accuracy of sound transmission loss obtained by the impedance tube method depends upon the diameter size of the impedance tube (i.e., tested sample size). For sound isolation materials having relatively large bending stiffness such as acryl, wood, and aluminum plates, it was found that the impedance tube method proposed by this study was not valid to measure the sound transmission loss. On the other hand, for sound isolation materials having relatively small bending stiffness such as rubber, polyvinyl, and asphalt sheets, the comparisons of transmission loss between the results from the impedance tube method and the theory showed a good agreement within the range of the frequencies satisfying the normal incidence mass law. Therefore, the two-microphone impedance tube method proposed by this study can be an effective measurement method to evaluate the sound transmission loss for soft sound isolation sheets having relatively small bending stiffness.

비선형 동역학적 방법을 통한 뇌파 복잡도와 임피던스 심장기록법(ICG) 지표와의 상관성 연구 (A Study on the Correlationship between EEG Complexity by Nonlinear Dynamics Analysis and Impedance Cardiography)

  • 유재민;박영배;박영재
    • 대한한의진단학회지
    • /
    • 제11권2호
    • /
    • pp.128-140
    • /
    • 2007
  • Purpose: We performed this study to examine the correlationship between EEG complexity and impedance cardiography data using correlation analysis. Method: This study performed on 30 healthy subjects(16 males, 14 females). Before and after natural respiration, ICG data were recorded, and EEG raw data were measured by moving windows during 15 minutes. The correlation dimension(D2) was calculated from 15 minutes data. 8 channels EEG data were analysed with 9 index of ICG data by correlation analysis. Result: 1. ACI of impedance cardiography had significant correlationship with ch.4 of EEG complexity(p=0.03). 2. VI of impedance cardiography had significant correlationship with ch.3 of EEG complexity(p=0.034) and ch.4 of EEG complexity(p=0.017). 3. HR, TFC, PEP, LVET, STR of impedance cardiography had no significant correlationship with all of 8 channel EEG complexity. Conclusions: These results suggest that nonlinear analysis of EEG and impedance cardiography have some significant correlationship. And it can make out relationship between brain system and cardiovascular system. In the future, therefore, more study of these fields are necessary.

  • PDF

KTX역사 및 일반철도역사의 환승저항 산정 (A Study of Transfer Impedance of KTX and Rail Stations)

  • 김혜란;김황배;오재학;최진희
    • 대한교통학회지
    • /
    • 제27권5호
    • /
    • pp.189-194
    • /
    • 2009
  • 환승은 대중교통의 대표적인 취약점으로 꼽히는 불편함으로, 대중교통의 경쟁력을 약화시키는 요소이다. 이에 환승으로 인한 불편함 중 개선가능한 요소들을 체계적이고 효과적으로 개선하기 위하여 환승시설 및 환승체계의 물리적 요소들에 대한 보행자 편의성을 계량화하여 환승역사의 환승 편의성에 대한 객관적 평가기준을 마련하고자 한다. 본 연구는 특히 KTX 역사 및 철도 역사를 대상으로 지역간 통행에 있어서 환승역사의 물리적 특성이 환승수단의 선택에 미치는 영향을 파악하고 그 과정에서 환승저항 모형을 구축하였다. 또한 이를 바탕으로 국내 주요 KTX역사 및 철도역사 환승시설을 대상으로 환승저항값을 산정하여 비교하였다. KTX 역사와 철도역사의 물리적 요소들 중 환승 의사결정에 유의하게 영향을 미치는 요소는 환승패스의 외부보행거리, 환승패스의 내부보행거리, 계단 수, 에스컬레이터 수로 동일하게 나타났으나 환승저항 요소의 상대적 크기에 있어서는 차이가 있는 것으로 분석되었다. 에스컬레이터 1대는 약 1~3분의 체감시간 절감 효과를 가지는 것으로 나타났다. 산출된 환승저항 모형은 환승역사별 시설여건을 비교하고 시설개선의 우선순위를 판단하는 데에 객관적 지표로 활용될 수 있을 것이라 기대된다.

Local dynamic characteristics of PZT impedance interface on tendon anchorage under prestress force variation

  • Huynh, Thanh-Canh;Lee, Kwang-Suk;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • 제15권2호
    • /
    • pp.375-393
    • /
    • 2015
  • In this study, local dynamic characteristics of mountable PZT interfaces are numerically analyzed to verify their feasibility on impedance monitoring of the prestress-loss in tendon anchorage subsystems. Firstly, a prestressed tendon-anchorage system with mountable PZT interfaces is described. Two types of mountable interfaces which are different in geometric and boundary conditions are designed for impedance monitoring in the tendon-anchorage subsystems. Secondly, laboratory experiments are performed to evaluate the impedance monitoring via the two mountable PZT interfaces placed on the tendon-anchorage under the variation of prestress forces. Impedance features such as frequency-shifts and root-mean-square-deviations are quantified for the two PZT interfaces. Finally, local dynamic characteristics of the two PZT interfaces are numerically analyzed to verify their performances on impedance monitoring at the tendon-anchorage system. For the two PZT interfaces, the relationships between structural parameters and local vibration responses are examined by modal sensitivity analyses.

Wireless Impedance-Based SUM for Bolted Connections via Multiple PZT-Interfaces

  • Nguyen, Khac-Duy;Kim, Jeong-Tae
    • 비파괴검사학회지
    • /
    • 제31권3호
    • /
    • pp.246-259
    • /
    • 2011
  • This study presents a structural health monitoring (SHM) method for bolted connections by using multi-channel wireless impedance sensor nodes and multiple PZT-interfaces. To achieve the objective, the following approaches are implemented. Firstly, a PZT-interface is designed to monitor bolt loosening in bolted connection based on variation of electro-mechanical(EM) impedance signatures. Secondly, a wireless impedance sensor node is designed for autonomous, cost-efficient and multi-channel monitoring. For the sensor platform, Imote2 is selected on the basis of its high operating speed, low power requirement and large storage memory. Finally, the performance of the wireless sensor node and the PZT-interfaces is experimentally evaluated for a bolt-connection model Damage monitoring method using root mean square deviation(RMSD) index of EM impedance signatures is utilized to estimate the strength of the bolted joint.

생체 임피던스 계측 방법의 구현에 관한 연구 (A Study on an Implementation of Bioelectric Impedance Instrumentation)

  • 김홍석;박세화
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.247-247
    • /
    • 2000
  • A new bioelectric impedance measurement method is proposed for the precise measurement of the bioelectric impedance. To obtain the impedance from the known applied a.c. current and the measured voltage signals, a frequency conversion circuit, like the mixer in heterodyne receivers, is introduced to reduce the frequency of the original current. It can be observed from several lines of derivation that the impedance is independent on the amplitude and phase of the mixing signals. This makes it possible to use low-speed analog-to-digital converters and thus utilize cheaper electronic parts in the implementation. The possibility of the method is shown by simulations, and a generic structure applicable to bioelectric impedance measurement devices is also proposed.

  • PDF

지중케이블 선로 임피던스 실측 및 분석 (Measurement and Analysis of Line Impedance in Underground Cables)

  • 하체웅;김정년
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 A
    • /
    • pp.205-207
    • /
    • 2003
  • The line impedance is important data that is applied in all analysis fields of electric power system like power flow, fault current, stability and relay calculation etc. Usually, impedance can be accurately calculated in case of overhead line. However, in case of power cables or combined transmission lines, impedance can not be accurately calculated because cable systems have the sheath, grounding wires, and earth resistance. Therefore, if there is a fault in cable system, these terms will severely be caused much error to calculation of impedance. Therefore, the line impedance were measured for this study in an actual power system of underground cables, and were analyzed by a generalized circuit analysis program EMTP for comparison with the measured value. These analysis result is considered to become foundation of impedance calculation for underground cable.

  • PDF

On DC-Side Impedance Frequency Characteristics Analysis and DC Voltage Ripple Prediction under Unbalanced Conditions for MMC-HVDC System Based on Maximum Modulation Index

  • Liu, Yiqi;Chen, Qichao;Li, Ningning;Xie, Bing;Wang, Jianze;Ji, Yanchao
    • Journal of Power Electronics
    • /
    • 제16권1호
    • /
    • pp.319-328
    • /
    • 2016
  • In this study, we first briefly introduce the effect of circulating current control on the modulation signal of a modular multilevel converter (MMC). The maximum modulation index is also theoretically derived. According to the optimal modulation index analysis and the model in the continuous domain, different DC-side output impedance equivalent models of MMC with/without compensating component are derived. The DC-side impedance of MMC inverter station can be regarded as a series xR + yL + zC branch in both cases. The compensating component of the maximum modulation index is also related to the DC equivalent impedance with circulating current control. The frequency characteristic of impedance for MMC, which is observed from its DC side, is analyzed. Finally, this study investigates the prediction of the DC voltage ripple transfer between two-terminal MMC high-voltage direct current systems under unbalanced conditions. The rationality and accuracy of the impedance model are verified through MATLAB/Simulink simulations and experimental results.

Theoretical formulations of current and unique Rayleigh waves with impedance boundary condition embedding normal stress

  • Nguyen, Xuan Quynh;Lee, Dongkyu
    • Smart Structures and Systems
    • /
    • 제29권2호
    • /
    • pp.279-286
    • /
    • 2022
  • In this article, a novel propagation formulation of Rayleigh waves in a compressible isotropic half-space with impedance boundary condition is proposed by embedding the normal stress. In a two-dimensional case, it is assumed that a design boundary is free of normal traction and a shear traction depends on linearly a normal component of displacements multiplied by frequencies. Therefore, impedance boundary conditions affect the normal stress, where the impedance parameters correspond to dimensions of stresses over velocity. On the other hand, vanished impedance values are traction-free boundary conditions. The main purpose of this article is to present theoretically the existence and uniqueness of a Rayleigh wave formulation relying on secular equation's mathematical analyses. Its velocity varies along with the impedance parameters. Moreover, numerical experiments with different values for the velocity of Rayleigh waves are carried out. The present Rayleigh waves study is a fundamental step in analyzing the cause and effect of physical states such as building or structure damages resulting from natural dynamics. The results of the study generate a basic design formulation theory to test the effects of Rayleigh waves affecting structures when an earthquake occurs. The presence and uniqueness of the proposed formulation is verified by mutual comparisons of several numerical examples.

변전소와 차량간의 동기화를 통한 실시간 전차선로 임피던스 예측 기법 연구 (A Study on Real Time Catenary Impedance Estimation Technique using the Synchronized Measuring Data between Substation and Train)

  • 정호성
    • 전기학회논문지
    • /
    • 제62권10호
    • /
    • pp.1458-1464
    • /
    • 2013
  • This paper proposed a new real time catenary impedance estimation technique using synchronized power data from the measured data of operating vehicle and substation for catenary protective relay and fault locator setting. This paper presented estimation equation of catenary impedance using synchronized power data between substation and vehicle of AT feeding system for the performance verification of the proposed technique. Also AC feeding system is modeled through power analysis program and performance was verified through simulation according to various load changes. We verified that average 2.38%(distance equivalent 23.8 m) error appeared between the proposed estimation equation of catenary impedance and power analysis program simulation output in no connection double track system between up track and down track. Furthermore, We confirmed that estimation error is bigger depending on the increasing the distance from substation and vehicle impedance using only using vehicle current when calculating vehicle impedance in connection double track system between up track and down track. But, We confirmed that the proposed technique estimated accurately catenary impedance regardless of vehicle impedance and distance from substation.