• Title/Summary/Keyword: impedance ratio

Search Result 569, Processing Time 0.021 seconds

Design and Fabrication of an LPVT Embedded in a GIS Spacer (GIS 스페이서 내장형 저전력 측정용 변압기의 설계 및 제작)

  • Seung-Gwan Park;Gyeong-Yeol Lee;Nam-Hoon Kim;Cheol-Hwan Kim;Gyung-Suk Kil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.2
    • /
    • pp.175-181
    • /
    • 2024
  • In electrical power substations, bulky iron-core potential transformers (PTs) are installed in a tank of gas-insulated switchgear (GIS) to measure system voltages. This paper proposed a low-power voltage transformer (LPVT) that can replace the conventional iron-core PTs in response to the demand for the digitalization of substations. The prototype LPVT consists of a capacitive voltage divider (CVD) which is embedded in a spacer and an impedance matching circuit using passive components. The CVD was fabricated with a flexible PCB to acquire enough insulation performance and withstand vibration and shock during operation. The performance of the LPVT was evaluated at 80%, 100%, and 120% of the rated voltage (38.1 kV) according to IEC 61869-11. An accuracy correction algorithm based on LabVIEW was applied to correct the voltage ratio and phase error. The corrected voltage ratio and phase error were +0.134% and +0.079 min., respectively, which satisfies the accuracy CL 0.2. In addition, the voltage ratio of LPVT was analyzed in ranges of -40~+40℃, and a temperature correction coefficient was applied to maintain the accuracy CL 0.2. By applying the LPVT proposed in this paper to the same rating GIS, it can be reduced the length per GIS bay by 11%, and the amount of SF6 by 5~7%.

The Preparation of Non-aqueous Supercapacitors with LiMn2O4/C Composite Positive Electrodes (LiMn2O4/C 복합 양극을 이용한 비수계 슈퍼커패시터의 제조)

  • Kim, Kyoungho;Yoo, Jeeyoung;Kim, Minsoo;Yeu, Taewhan
    • Korean Chemical Engineering Research
    • /
    • v.45 no.2
    • /
    • pp.178-182
    • /
    • 2007
  • Non-aqueous supercapacitors by using activated C and $LiMn_2O_4$ as an active material in a positive electrode were prepared and characterized. From the cyclic voltammetry and AC impedance analysis, the capacitive effect by electric double layer of activated carbon and the faradic effect by intercalation/deintercalation of $Li^+$ ion were observed. Increasing the ratio of $LiMn_2O_4$, specific capacitances and energy densities of supercapacitor were increased. At the ratio of 0.86:0.14 ($LiMn_2O_4:C$), the maximum specific capacitance of 17.51 Wh/L and energy density of 23.83 F/cc were obtained, which were more than twice of those for a conventional electric double layer capacitor. Even after 1,000 charge/discharge cycle, the supercapacitor by using the electrode containing 14% of activated carbon and 86% of $LiMn_2O_4$ showed 60% better specific capacitance and energy density than that by using the electrode containing 100% activated carbon.

Sintering and Electrical Properties of Cr-doped ZnO-Bi2O3-Sb2O3 (Cr을 첨가한 ZnO-Bi2O3-Sb2O3계의 소결과 전기적 특성)

  • Hong, Youn-Woo;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.12
    • /
    • pp.942-948
    • /
    • 2010
  • In this study we aims to examine the effects of 0.5 mol% $Cr_2O_3$ addition on the reaction, microstructure development, resultant electrical properties, and especially the bulk trap and interface state levels of ZnO-$Bi_2O_3-Sb_2O_3$ (Sb/Bi=0.5, 1.0, and 2.0) systems (ZBS). The samples were prepared by conventional ceramic process, and characterized by XRD, density, SEM, I-V, impedance and modulus spectroscopy (IS & MS) measurement. The sintering and electrical properties of Cr-doped ZBS (ZBSCr) systems were controlled by Sb/Bi ratio. Pyrochlore ($Zn_2Bi_3Sb_3O_{14}$) was decomposed more than $100^{\circ}C$ lowered on heating in ZBS (Sb/Bi=1.0) by Cr doping. The densification of ZBSCr (Sb/Bi=0.5) system was retarded to $800^{\circ}C$ by unknown Bi-rich phase produced at $700^{\circ}C$. Pyrochlore on cooling was reproduced in all systems. And $Zn_7Sb_2O_{12}$ spinel ($\alpha$-polymorph) and $\delta-Bi_2O_3$ phase were formed by Cr doping. In ZBSCr, the varistor characteristics were not improved drastically (non-linear coefficient $\alpha$ = 7~12) and independent on microstructure according to Sb/Bi ratio. Doping of $Cr_2O_3$ to ZBS seemed to form $Zn_i^{..}$(0.16 eV) and $V^{\bullet}_o$ (0.33 eV) as dominant defects. From IS & MS, especially the grain boundaries of Sb/Bi=0.5 systems were divided into two types, i.e. sensitive to oxygen and thus electrically active one (1.1 eV) and electrically inactive intergranular one (0.95 eV) with temperature.

High-Efficiency CMOS Power Amplifier using Low-Loss PCB Balun with Second Harmonic Impedance Matching (2차 고조파 정합 네트워크를 포함하는 저손실 PCB 발룬을 이용한 고효율 CMOS 전력증폭기)

  • Kim, Hyungyu;Lim, Wonseob;Kang, Hyunuk;Lee, Wooseok;Oh, Sungjae;Oh, Hansik;Yang, Youngoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.2
    • /
    • pp.104-110
    • /
    • 2019
  • In this paper, a complementary metal oxide semiconductor(CMOS) power amplifier(PA) integrated circuit operating in the 900 MHz band for long-term evolution(LTE) communication systems is presented. The output matching network based on a transformer was implemented on a printed circuit board for low loss. Simultaneously, to achieve high efficiency of the PA, the second harmonic impedances are controlled. The CMOS PA was fabricated using a $0.18{\mu}m$ CMOS process and measured using an LTE uplink signal with a bandwidth of 10 MHz and peak to average power ratio of 7.2 dB for verification. The implemented CMOS PA module exhibits a power gain of 24.4 dB, power-added efficiency of 34.2%, and an adjacent channel leakage ratio of -30.1 dBc at an average output power level of 24.3 dBm.

Characteristic Analysis of Efficiency and Impedance With WPT Transmitter and Receiver Coil Distance (무선전력전송 송수신코일 거리에 따른 효율 및 임피던스 특성 해석)

  • Park, Dae Kil;Kim, Young Hyun;Koo, Kyung Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.3
    • /
    • pp.160-165
    • /
    • 2022
  • In this paper, we have proposed a magnetic resonant 6.78MHz WPT(wireless power transfer) technique which can be applied to a fixed transmitter and a receiver of varying relative distance and coil alignment, Power transmission characteristics are studied with the relative distance and misalignment ration of coil area between the transmitting and receiving coils. The coils are designed with the size of 60×80mm2 by direct feeding method, and the characteristics are derived with the maximum relative distance of 50mm and horizontal area misalignment state of 0-40mm misalignment of coil center axis in the XY plane. The power transmission characteristics are compared between the 3D EM simulation and the measured data, and the power transmission shows larger than -3dB performance with the vertical distance of up to 30mm and 50% area misalignmment ratio. This work showsthe transmission characteristics according to relative distance and misalignment state between the cols and that direct feeding has advantage for the short relative distance and small misalignment ratio.

Properties of Capacity on Carbon Electrode in EC:MA Electrolytes - I. Effect of Mixing Ratio on the Electrochemical Properties - (EC:MA 혼합전해질에서 카본 전극의 용량 특성 - I. 전기화학적 특성에 대한 혼합비의 영향 -)

  • Park, Dong-Won;Kim, Woo-Seong;Son, Dong-Un;Kim, Sung-Phil;Choi, Yong-Kook
    • Applied Chemistry for Engineering
    • /
    • v.17 no.2
    • /
    • pp.183-187
    • /
    • 2006
  • The choice of solvents for electrolytes solutions is very important to improve the characteristics of charge/discharge in the Li-ion battery system. Such solvent systems have been widely investigated as electrolytes for Li-ion batteries. In this paper, the electrochemical properties of the solid electrolyte interphase film formed on carbon anode surface and the solvent decomposition voltage in 1 M LiPF6/EC:MA(x:y) electrolyte solutions prepared from the various mixing volume ratios are investigated by chronopotentiometry, cyclic voltammetry, and impedance spectroscopy. As a result, the solvent decomposition voltages are varied with the ionic conductivity of the electrolyte. Electrochemical properties of the passivation film were different, which are dependent on the mixture ratio of the solvents. Therefore, the most appropriate mixing ratio of EC and MA as a solvent in 1 M $LiPF_6/(EC+MA)$ system for Li-ion battery is approximately 1:3 (EC:MA, volume ratio).

The relationships of body mass index, waist-to-height ratio, and body fat percentage with blood pressure and its hemodynamic determinants in Korean adolescents: a school-based study

  • Kim, Na Young;Hong, Young Mi;Jung, Jo Won;Kim, Nam Su;Noh, Chung Il;Song, Young-Hwan
    • Clinical and Experimental Pediatrics
    • /
    • v.56 no.12
    • /
    • pp.526-533
    • /
    • 2013
  • Purpose: Obesity is an important risk factor for hypertension in adolescents. We investigated the relationship of obesity-related indices (body mass index [BMI], waist-to-height ratio [WHR], and body fat percentage [%BF]) with blood pressure and the hemodynamic determinants of blood pressure in Korean adolescents. Methods: In 2008, 565 adolescents, aged 12-16 years, were examined. The %BF of the participants was measured by bioelectrical impedance analysis. Echocardiography and brachial artery pulse tracing were used to estimate the stroke volume (SV), cardiac output (CO), total vascular resistance (TVR), and total arterial compliance (TAC). Results: We noted that BMI, WHR, and %BF were positively correlated with systolic blood pressure (SBP) and diastolic blood pressure (DBP). The positive correlation between BMI and blood pressure (SBP and DBP) persisted after adjustment for WHR and %BF. However, after adjustment for BMI, the positive associations between blood pressure (SBP and DBP) and WHR as well as %BF, were not noted. With regard to the hemodynamic factors, BMI, but not WHR and %BF, was an independent positive factor correlated with SV and CO. TVR had an independent negative association with BMI; however, it was not associated with WHR or %BF. Moreover, we noted that BMI, WHR, and %BF did not affect TAC. Conclusion: In Korean adolescents, BMI had an independent positive correlation with SBP and DBP, possibly because of its effects on SV, CO, and TVR. WHR and %BF are believed to indirectly affect SBP and DBP through changes in BMI.

Design of Crooked Wire Antennas for UHF Band RFID Reader (UHF 대역 RFID 리더용 Crooked Wire 안테나 설계)

  • Choo Jae-Yul;Choo Ho-Sung;Park Ik-Mo;Oh Yi-Sok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.5 s.96
    • /
    • pp.472-481
    • /
    • 2005
  • This paper reports the design of RFID reader antennas working in UHF band. The reader antennas were designed using a Pareto Genetic Algorithm(Pareto GA). Antennas were optimized to have circular polarization(CP) with less than 3 dB axial ratio, impedance matching with less than VSWR=2 within the frequency range of UHF, an adequate readable range, a restricted size(kr<2.22) considering the practical condition. After Pareto GA optimization, we selected and built the most suitable antenna design and compared the measured results to the simulations. Operating principle of the antenna was explained by investigating the amplitude and the phase of the induced current on the antenna body. We also researched the stability of the antenna with respect to the manufacturing error and studied the critical design parameters by applying the random error method on the antenna bent points.

Omnidirectional Circularly Polarized Antenna Using Zeroth-Order Resonance (영차 공진을 이용한 전방향성 원형 편파 안테나)

  • Park, Byung-Chul;Lee, Jeong-Hae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.8
    • /
    • pp.806-812
    • /
    • 2009
  • In this paper, the omnidirectional circularly polarized(CP) antenna using arc-shaped mushroom structure with curved branch is proposed. To obtain a vertical polarization and an omnidirectional radiation pattern, the CP antenna uses zeroth-order resonance(ZOR) mode of composite right and left handed(CRLH) transmission line. The horizontal polarization is achieved by the curved branches. Also, the spacing between curved branch and arc-shaped mushroom structure gives the $90^{\circ}$ phase difference between vortical and horizontal polarization. The proposed antenna, therefore, has an omnidirectional CP radiation pattern In the azimuthal plane. The electrical size of the proposed antenna is reduced by 38%, compared with that of the previously presented omnidirectional CP antenna. In addition, the CP antenna is simply designed without $90^{\circ}$ phase shifter and dual feed line. The proposed antenna uses a Bazooka balun for good impedance matching and radiation pattern. To improve 3 dB axial ratio in XY plane, the designed antenna is optimized. After optimization, the measured 3 dB axial ratio in XY plane is observed in $86{\sim}282^{\circ}$.

Increase of Operational Current in a SFCL using Series or Parallel Coupling of Coils (코일의 직.병렬결합을 이용한 초전도 사고전류제한기의 동작전류 증가)

  • Lim, Sung-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.10
    • /
    • pp.46-51
    • /
    • 2007
  • The fault current limiting characteristics of superconducting fault current limiter(SFCL) using magnetic coupling of two coils were investigated. This SFCL consists of a high-TC superconducting(HTSC) element and two coils with series or parallel connection on the same iron. In normal time, the inner magnetic fluxes generated by two coils are canceled in case that the HTSC element keeps superconducting state. However, in case that the resistance of the HTSC element happens by a short-circuit the magnetic fluxes, not cancelled, induce the voltages across two coils and the fault current can be limited by the impedance of this SFCL. This SFCL has the merit that the operational current of SFCL can be increased higher than the critical current of the superconducting element by adjusting the inductance ratio between two coils. To confirm its operation, the circuit for the fault simulation was constructed. From the measured voltage and current of the SFCL, it was confirmed that the operating current of this SFCL increased more than that of HTSC element's independent operation.