• 제목/요약/키워드: immune-mediated inflammatory disease

검색결과 79건 처리시간 0.027초

Development of a New Herbal Anti-arthritis Drug, \textrm{Joins}^{TM}$ (SKI 306X)

  • Cho, Yong-Baik
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2001년도 추계학술대회 및 정기총회
    • /
    • pp.7-13
    • /
    • 2001
  • Arthritis may be broadly classified as degenerative - related to defects in cartilage and other joint constituents, often age-associated - or inflammatory disease. Inflammatory arthritis called as rheumatoid arthritis (RA) is a chronic inflammatory arthropathy and characterized by a destructive arthritis. RA encompasses infectious arthritis, arthritis caused by intra-articular deposits of crystalline material (gout), syndromes associated with genetic defects (familial Mediterranean fever), and the immune-mediated inflammatory arthropathy. Degenerative arthritis called as osteoarthritis (OA), which is most frequently occurring, causes degenerative figures of knee, waist and knuckle, and accompanies severe pain around the cartilage. Also, it may cause morning stiffness, gelling effect, tenderness, bone swelling, crepitus, and motion disorders.

  • PDF

Polyacetylene Compound from Cirsium japonicum var. ussuriense Inhibited Caspase-1-mediated IL-$1{\beta}$ Expression

  • Shim, Hong;Moon, Jung Sun;Lee, Sookyeon;Yim, Dongsool;Kang, Tae Jin
    • IMMUNE NETWORK
    • /
    • 제12권5호
    • /
    • pp.213-216
    • /
    • 2012
  • Our previous report showed that polyacetylene compound, 1-Heptadecene-11, 13-diyne-8, 9, 10-triol (PA) from the root of Cirsium japonicum var. ussuriense has anti-inflammatory activity. In this study we investigated the role of the PA as inhibitor of caspase-1, which converts prointerleukin-$1{\beta}$ (proIL-$1{\beta}$) to active IL-$1{\beta}$ and is activated by inflammasome involved in the inflammatory process. We tested the effect of PA on the production of pro-inflammatory cytokines, IL-$1{\beta}$ in murine macrophage cell line, RAW264.7. PA inhibited lipopolysaccharide (LPS)-induced IL-$1{\beta}$ production by macrophages at a dose dependent manner. PA also suppressed the activation of caspase-1. The mRNA level of ASC (apoptosis-associated spec-like protein containing a CARD), an important adaptor protein of inflammasome, was decreased in the PA treated group. Therefore our results suggest that the anti-inflammatory effect of PA is due to inhibit the caspase-1 activation.

Promotion of Remyelination by Sulfasalazine in a Transgenic Zebrafish Model of Demyelination

  • Kim, Suhyun;Lee, Yun-Il;Chang, Ki-Young;Lee, Dong-Won;Cho, Sung Chun;Ha, Young Wan;Na, Ji Eun;Rhyu, Im Joo;Park, Sang Chul;Park, Hae-Chul
    • Molecules and Cells
    • /
    • 제38권11호
    • /
    • pp.1013-1021
    • /
    • 2015
  • Most of the axons in the vertebrate nervous system are surrounded by a lipid-rich membrane called myelin, which promotes rapid conduction of nerve impulses and protects the axon from being damaged. Multiple sclerosis (MS) is a chronic demyelinating disease of the CNS characterized by infiltration of immune cells and progressive damage to myelin and axons. One potential way to treat MS is to enhance the endogenous remyelination process, but at present there are no available treatments to promote remyelination in patients with demyelinating diseases. Sulfasalazine is an anti-inflammatory and immune-modulating drug that is used in rheumatology and inflammatory bowel disease. Its anti-inflammatory and immunomodulatory properties prompted us to test the ability of sulfasalazine to promote remyelination. In this study, we found that sulfasalazine promotes remyelination in the CNS of a transgenic zebrafish model of NTR/MTZ-induced demyelination. We also found that sulfasalazine treatment reduced the number of macrophages/microglia in the CNS of demyelinated zebrafish larvae, suggesting that the acceleration of remyelination is mediated by the immunomodulatory function of sulfasalazine. Our data suggest that temporal modulation of the immune response by sulfasalazine can be used to overcome MS by enhancing myelin repair and remyelination in the CNS.

Optic neuritis and multiple cranial neuropathies in patient with chronic inflammatory demyelinating polyneuropathy

  • Bae, Min-Jeong;Lee, Joonwon;Eun, Jeong Ik;Shin, Kyong Jin
    • Annals of Clinical Neurophysiology
    • /
    • 제24권2호
    • /
    • pp.59-62
    • /
    • 2022
  • Chronic inflammatory demyelinating polyneuropathy (CIDP) is a chronic recurrent acquired immune-mediated disease of the peripheral nerves that presents with progressive sensory and motor deficits in all four limbs. Cranial nerve involvement is not as common as in Guillain-Barre syndrome, and central nervous system involvement including optic neuritis has rarely been reported in patients with CIDP. We recently experienced a case with classic CIDP involving bilateral facial and trigeminal nerves, right lower cranial nerves, and the right optic nerve.

RAW 264.7 세포에서 Euryale ferox Salisbury 추출물의 항산화기전을 통한 산화적 스트레스.염증반응 억제효과 규명 (Suppressive Effect of Euryale ferox Salisbury Extracts on Inflammatory Response in LPS-stimulated RAW 264.7 Cells through the Antioxidative Mechanism)

  • 김영환;이민자;이혜숙;김정국;박원환
    • 동의생리병리학회지
    • /
    • 제25권2호
    • /
    • pp.202-211
    • /
    • 2011
  • The stems and branchs of Euryale ferox Salisbury (EF), are used in Chinese herbal medicine for latent-heat-clearing, antipyretic, detoxicant and anti-inflammatory ailments. This plant is used worldwide for the treatment of many types of inflammatory disease including respiratory infections, diabetes mellitus, rheumatoid arthritis and play an important role in the immune reaction. Topical natural antioxidants are a useful strategy for the prevention of oxidative stress mediated inflammatory disease. Plants produce significant amounts of antioxidants to prevent the oxidative stress caused by photons and oxygen, therefore they represent a potential source of new compounds with antioxidant activity. This study was designed to evaluate whether EFEA (ethylacetate fraction of EF) may ameliorate oxidative stress and inflammatory status through the antioxidative mechanism in LPS-stimulated RAW 264.7 murine macrophage cell line. Treatment of RAW 264.7 cells with EFEA significantly reduced LPS-stimulated inflammatory response in a dose-dependent manner. In conclusion, the EF extracts have anti-inflammatory effects in vitro system, which can be used for developing pharmaceutical drug against oxidative stress and chronic inflammatory disease.

가미패독산(加味敗毒散) 경구 투여에 의한 Nc/Nga 생쥐의 아토피 피부염 억제 작용 (Suppression of Spontaneous Dermatitis in Nc/Nga Atopic Model by Gamipaidok-san, a Traditional Herbal Medicine)

  • 진가현;진미림;최정묵;윤미영;김동희
    • 동의생리병리학회지
    • /
    • 제20권4호
    • /
    • pp.866-874
    • /
    • 2006
  • Atopic dermitiis(AD) is a chronic inflammatory skin disease, which requires safe and effective medicinal therapy. Over production of Th2 cytokines and chemokines as well as IgE, which are mediated by highly activated immune cells, have been considered as pathologic factors in this disease. We found that Gamipaidok-san(GPDS), which is a traditional herbal medicine clinically prescribing for atopic dermitis patients in the hospital, has suppressive effects on the development of DNC8 induced dermatitis in Nc/Nga atopic model. Oral administration of GPDS at the concentration of 250 mg/Kg for 12 weeks significantly suppressed the clinical severity of the dermatitis including pruities, edema, eczematous and dryness. Histological examination revealed that thickness of dermis and epidermis were considerably reduced, and the number of infiltrated inflammatory immune cells including mast cells, CCR3+, and CD4+ T cells were decreased in the affected skin and ear, and consistantly, the number of CD3+/CCR3+ cells in Iymph nodes were decreased. The levels of Th2 cytokines produced by activated splenocyte from atopic mice were also down-regulated by GPDS. Furthermore, the serum levels of IgE were considerably reduced, which accompanied by a decrease in the number of B220+IgE+ B cells in the Iymph nodes. Taken together, these results suggested that oral administration of GPDS, a traditional herbal medicine, has suppressive effects on atopic dermitis of Nc/Nga mouse by the modulation of the immune system, therefore GPDS has potential as a natural therapeutic for treatment of atopic dermatitis.

The Role of Yoga Intervention in the Treatment of Allergic Rhinitis: A Narrative Review and Proposed Model

  • Chauhan, Ripudaman Singh;Rajesh, S.K
    • 셀메드
    • /
    • 제10권3호
    • /
    • pp.25.1-25.7
    • /
    • 2020
  • Allergic Rhinitis (AR) is an IgE (immunoglobin-E) mediated inflammatory condition of upper respiratory tract; main clinical features involve runny nose, sneezing, nasal obstruction, itching and watery eyes. AR is a global problem and has large variations in incidences, currently affects up to 20% - 40% of the population worldwide. It may not be a life-threatening disease per se but indisposition from the condition can be severe and has the potential to adversely affect the daily functioning of life. Classical yoga literature indicates that, components of yoga have been used to treat numerous inflammatory conditions including upper respiratory tract. A few yoga intervention studies reported improvement in lung capacity, Nasal air flow and symptoms of allergic rhinitis. This review examined various anti-inflammatory pathways mediated through Yoga that include downregulation of pro-inflammatory cytokines and upregulation of anti-inflammatory cytokines. The hypothalaminic-pitutary-adrenal (HPA) axis and vagal efferent stimulation has been reported to mediate anti-inflammatory effect. A significant reduction is also reported in other inflammatory biomarkers like- TNF-alpha, nuclear factor kappa B (NF-κB), plasma CRP and Cortisol level. Neti, a yogic nasal cleansing technique, reported beneficial effect on AR by direct physical cleansing of thick mucus, allergens, and inflammatory mediator from nasal mucosa resulting in improved ciliary beat frequency. We do not find any study showing effect of yoga on neurogenic inflammation. In summary, Integrated Yoga Therapy may have beneficial effect in reducing symptoms and improving quality of life for patients with allergic rhinitis. Yoga may reduce inflammation through mediating neuro-endocrino-immunological network. Future studies are needed to explore the mechanism how yoga might modulate immune inflammation cascade and neurogenic inflammation at the cellular level in relevance to allergic rhinitis; the effects of kriyas (yogic cleansing techniques) also need to be evaluated in early and late phase of AR. So the proposed model could guide future research.

Co-existence of relapsing polychondritis and Crohn disease treated successfully with infliximab

  • Jung, Hye-In;Kim, Hyun Jung;Kim, Ji-Min;Lee, Ju Yup;Park, Kyung Sik;Cho, Kwang Bum;Lee, Yoo Jin
    • Journal of Yeungnam Medical Science
    • /
    • 제38권1호
    • /
    • pp.70-73
    • /
    • 2021
  • Relapsing polychondritis (RP) is a rare, progressive immune-mediated systemic inflammatory disease of unknown etiology, characterized by recurrent inflammation of cartilaginous structures. Approximately 30% of RP cases are associated with other autoimmune diseases. However, the co-occurrence of RP and Crohn disease (CD) has rarely been reported. Herein, we present a 35-year-old woman diagnosed with RP and CD, who was refractory to initial conventional medications, including azathioprine and glucocorticoid, but who subsequently responded to infliximab (IFX). For both diseases, remission was sustained with IFX. There has been no previous report regarding the successful treatment of co-existing RP and CD with IFX.

Rifampicin Alleviates Atopic Dermatitis-Like Response in vivo and in vitro

  • Kim, Seung Hyun;Lee, Ki Man;Lee, Geum Seon;Seong, Ju-Won;Kang, Tae Jin
    • Biomolecules & Therapeutics
    • /
    • 제25권6호
    • /
    • pp.634-640
    • /
    • 2017
  • Atopic dermatitis (AD) is a common inflammatory skin disorder mediated by inflammatory cells, such as macrophages and mast cells. Rifampicin is mainly used for the treatment of tuberculosis. Recently, it was reported that rifampicin has anti-inflammatory and immune-suppressive activities. In this study, we investigated the effect of rifampicin on atopic dermatitis in vivo and in vitro. AD was induced by treatment with 2, 4-dinitrochlorobenzene (DNCB) in NC/Nga mice. A subset of mice was then treated with rifampicin by oral administration. The severity score and scratching behavior were alleviated in the rifampicin-treated group. Serum immunoglobulin E (IgE) and interleukin-4 (IL-4) levels were also ameliorated in mice treated with rifampicin. We next examined whether rifampicin has anti-atopic activity via suppression of mast cell activation. Rifampicin suppressed the release of ${\beta}$-hexosaminidase and histamine from human mast cell (HMC)-1 cultures stimulated with compound 48/80. Treatment with rifampicin also inhibited secretion of inflammatory mediators, such tumor necrosis factor-${\alpha}$ ($TNF-{\alpha}$) and prostaglandin $D_2$ ($PGD_2$), in mast cells activated by compound 48/80. The mRNA expression of cyclooxygenase 2 (COX-2) was reduced in the cells treated with rifampicin in a concentration-dependent manner. These results suggest that rifampicin can be used to treat atopic dermatitis.

Effects of Panax ginseng in Neurodegenerative Diseases

  • Cho, Ik-Hyun
    • Journal of Ginseng Research
    • /
    • 제36권4호
    • /
    • pp.342-353
    • /
    • 2012
  • Ginseng, the root of the Panax ginseng, has been a popular and widely-used traditional herbal medicine in Korea, China, and Japan for thousands of years. Now it has become popular as a functional health food and is used globally as a natural medicine. Evidence is accumulating in the literature on the physiological and pharmacological effects of P. ginseng on neurodegenerative diseases. Possible ginseng- or ginsenosides-mediated neuroprotective mechanisms mainly involve maintaining homeostasis, and anti-inflammatory, anti-oxidant, anti-apoptotic, and immune-stimulatory activities. This review considers publications dealing with the various actions of P. ginseng that are indicative of possible neurotherapeutic efficacies in neurodegenerative diseases and neurological disorders such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis and multiple sclerosis.