Browse > Article

Suppressive Effect of Euryale ferox Salisbury Extracts on Inflammatory Response in LPS-stimulated RAW 264.7 Cells through the Antioxidative Mechanism  

Kim, Young-Hwan (Department of Diagnostics, College of Oriental Medicine, Dongguk University)
Lee, Min-Ja (Institute of Oriental Medicine, College of Oriental Medicine, Dongguk University)
Lee, Hye-Sook (Department of Diagnostics, College of Oriental Medicine, Dongguk University)
Kim, Jung-Guk (Department of Diagnostics, College of Oriental Medicine, Dongguk University)
Park, Won-Hwan (Department of Diagnostics, College of Oriental Medicine, Dongguk University)
Publication Information
Journal of Physiology & Pathology in Korean Medicine / v.25, no.2, 2011 , pp. 202-211 More about this Journal
Abstract
The stems and branchs of Euryale ferox Salisbury (EF), are used in Chinese herbal medicine for latent-heat-clearing, antipyretic, detoxicant and anti-inflammatory ailments. This plant is used worldwide for the treatment of many types of inflammatory disease including respiratory infections, diabetes mellitus, rheumatoid arthritis and play an important role in the immune reaction. Topical natural antioxidants are a useful strategy for the prevention of oxidative stress mediated inflammatory disease. Plants produce significant amounts of antioxidants to prevent the oxidative stress caused by photons and oxygen, therefore they represent a potential source of new compounds with antioxidant activity. This study was designed to evaluate whether EFEA (ethylacetate fraction of EF) may ameliorate oxidative stress and inflammatory status through the antioxidative mechanism in LPS-stimulated RAW 264.7 murine macrophage cell line. Treatment of RAW 264.7 cells with EFEA significantly reduced LPS-stimulated inflammatory response in a dose-dependent manner. In conclusion, the EF extracts have anti-inflammatory effects in vitro system, which can be used for developing pharmaceutical drug against oxidative stress and chronic inflammatory disease.
Keywords
Euryale ferox Salisbury (EF); oxidative stress; antioxidative; anti-inflammatory; RAW 264.7 cell;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Amiram, R., Angela, W., Ned, S., Philip, N. Regulation of fibroblast cyclooxygenase synthesis by interleukin-1. J. Bio. Chem. 263: 3022-3024, 1988.
2 Yachie, A., Niida, Y., Wada, T., Igarashi, N., Kaneda, H., Toma, T., Ohta, K., Kasahara, Y., Koizumi, S. Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. J Clin Invest. 103(1):129-135 1999.   DOI   ScienceOn
3 Liu, Y.H., Lin, S.Y., Lee, C.C., Hou W.C. Antioxidant and nitric oxide production inhibitory activities of galacturonyl hydroxamic acid. Food Chemistry 109(1):159-166, 2008.   DOI   ScienceOn
4 Kikuchi, G., Yoshida, T., Noguchi, M. Heme oxygenase and heme degradation. Biochemical and Biophysical Research Communications 338(1):558-567, 2005.   DOI   ScienceOn
5 Alam, J., Stewart, D., Touchard, C., Boinapally, S., Choi, A.M.K., Cook, J.L. Nrf2, a Cap'n'Collar Transcription Factor, Regulates Induction of the Heme Oxygenase-1 Gene. J Biol Chem. 274(37):26071-26078, 1999.   DOI
6 Yachie, A., Niida, Y., Wada, T., Igarashi, N., Kaneda, H., Toma, T., Ohta, K., Kasahara, Y., Koizumi, S. Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. J Clin Invest. 103(1):129-135, 1999.   DOI   ScienceOn
7 Yu., R., Chen, C., Mo, Y.Y., Hebbar, V., Owuor, E.D., Tan, T.H., Kong, A.N. Activation of Mitogen-activated Protein Kinase Pathways Induces Antioxidant Response Element-mediated Gene Expression via a Nrf2-dependent Mechanism. J Biol Chem. 275(51):39907-39913, 2000.   DOI
8 Henkel, T., Machleidt, T., Alkalay, I., Kranke, M., Ben-Neriah, Y., Baeuerle, P.A. Rapid proteolysis of $I{\kappa}B-{\alpha}$ is necessary for activation of transcription factor $NF-{\kappa}B$. Nature 365: 182-185, 1993.   DOI
9 Jaiswal, A.K. Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic Biol Med. 36: 1199-1207, 2004.   DOI   ScienceOn
10 Huang, H.C., Nguyen, T., Pickett, C.B. Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant respponse element-mediated transcription. J Biol Chem. 277: 42769-42774, 2002.   DOI
11 Gorczynski, R.M. Understanding classical conditioning of immune responses. Neuro Immune Biology 1: 237-254, 2005.
12 Allanson, M., Reeve, V.E. Immunoprotective UVA (320-400nm) irradiation upregulates Heme Oxygenase-1 in the dermis and epidermis of hairless mouse skin. The Journal of Investigative Dermatology 122: 1030-1036, 2004.   DOI   ScienceOn
13 Kalayarasan, S., Prabhu, P.N., Sriram, N., Manikandan, R., Arumugam, M., Sudhandiran, G. Diallyl sulfide enhances antioxidants and inhibits inflammation through the activation of Nrf2 against gentamicin-induced nephrotoxicity in Wistar rats. European Journal of Pharmacology 606(1-3):162-171, 2009.   DOI   ScienceOn
14 Grimm, S., Baeuerle, P.A. The inducible transcription factor $NF{\kappa}B$: structure-function relationship of its protein subunits. Biochem J. 290: 297-308, 1993.   DOI
15 Sunnaramaiah, K., Telang, N., Ramonetti, J.T., Araki, R., Devito, B., Weksker, B.B., Dannenberg, A.J. Transcroption of cyclooxygenase-2 is enhanced in transformed mammary epithelial cells. Cancer Res. 56: 4424-4429, 1996.
16 Rios, J.L., Recio, M.C. Natural products as modulators of apoptosis and their role in inflammation. Studies in Natural Products Chemistry 33(13):141-192, 2006.
17 Das, S., Der, P., Raychaudhuri, U., Maulik, N., Das, D.K. The effect of Euryale ferox (Makhana), an herb of aquatic origin, on myocardial ischemic reperfusion injury. Mol Cell Biochem. 289(1-2):55-63, 2006.   DOI
18 Yoshitake, J., Kato, K., Yoshioka, D., Sueishi, Y., Sawa, T., Akaike, T., Yoshimura, T. Suppression of NO production and 8-nitroguanosine formation by phenol-containing endocrine-disrupting chemicals in LPS-stimulated macrophages: Involvement of estrogen receptor-dependent or -independent pathways. Nitric Oxide 18(3):223-228, 2008.   DOI   ScienceOn
19 Wang, H., Gao, J., Koua, J., Zhua, D., Yu, B. Anti-inflammatory activities of triterpenoid saponins from Polygala japonica. Phytomedicine 15: 321-326, 2008.   DOI   ScienceOn
20 Hsieh, Y.H., Kuo, P.M., Chien, S.C., Shyur, L.F., Wang, S.Y. Effects of Chamaecyparis formosensis Matasumura extractives on lipopolysaccharide-induced release of nitric oxide. Phytomedicine 14(10):675-680, 2007.   DOI   ScienceOn
21 Halliwell, B., Gutteridge, J.M. Role of free radicals and catalytic metalions in human disease: an overview. Method Enzymol. 186: 1-85, 1990.
22 Ali, K.A., Abdelhak, M., George, B., Panagiotis, K. Tea and herbal infusions: Their antioxidant activity and phenolic propolis. Food Chemistry 89: 27-36, 2005.   DOI   ScienceOn
23 Forman, H.J., Torres, M. Redox signaling in macrophages. Mol. Aspects Med. 22(4-5):189-216, 2001.   DOI   ScienceOn
24 Allenm, R., Tresini, M. Oxidative stress and gene regulation. Free Radic. Biol. Med. 28: 463-499, 2000.   DOI   ScienceOn
25 Kim, H.J., Ahn, M.S., Kim, G.H., Kang, M.H. Antioxidant and antimicrobial activity of Pleurotus eryngii extracts prepared from different aerial part. Korean J. Food Sci. Technol. 38: 799-804, 2006.
26 Tsai, S.H., Lin-Shiau, S.Y., Lin, J.K. Supression of nitric oxide synthase and the down-regulation of the activation of $NF{\kappa}B$ in macrophages by resveratrol. Br J Pharmacol. 126(3):673-680, 1999.   DOI   ScienceOn
27 Kikuchi, G., Yoshida, T., Noguchi, M. Heme oxygenase and heme degradation. Biochemical and Biophysical Research Communications 338(1):558-567, 2005.   DOI   ScienceOn
28 Suh, S.J., Chung, T.W., Son, M.J., Kim, S.H., Moon, T.C., Son, K.H., Kim, H.P., Chang, H.W., Kim, C.H. The naturally occurring biflavonoid, ochnaflavone, inhibits LPS-induced iNOS expression, which is mediated by ERK1/2 via NF-${\kappa}B$ regulation, in RAW264.7 cells. Archives of Biochemistry and Biophysics 447(2):136-146, 2006.   DOI   ScienceOn
29 Sampath, V., Radish, A.C., Eis, A.L., Broniowska, K., Hogg, N., Konduri, G.G. Attenuation of lipopolysaccharide-induced oxidative stress and apoptosis in fetal pulmonary artery endothelial cells by hypoxia. Free Radic Biol Med. 46(5):663-671, 2009.   DOI   ScienceOn
30 Djordjevic, V.B. Free Radicals in Cell Biology. International Review of Cytology 237: 57-89, 2004.
31 Liang, Y.C., Huang, Y.T., Tsai, S.H., Lin-Shiau, S.Y., Chen, C.F., Lin, J.K. Supression of inducible cyclooxygenase and inducible nitric oxide synthase by apigenin and related flavonoids in mouse macrophages. Carcinogenesis 20(10):1945-1952, 1999.   DOI   ScienceOn
32 Azard, N., Rojanasakul, Y., Vallyathan, V. Inflammationand lung cancer: roles of reactive oxygen/nitrogen species. J Toxicol Environ Health B Crit Rev. 11(1):11-15, 2008.
33 Freeman, B.A., Crapo, J.D. Biology of disease: Free radicals and tissue injury. Laboratory Investigation; a Journal of Technical Methods and Pathology 47: 412-426, 1982.
34 Sies, H. Oxidative stress: from basic research to clinical application. Am. J. Med. 30: 31S-38S, 1991.
35 Finkel, T., Holbrook, N.J. Oxidants, oxidative stress and the biology of ageing. Nature 408(6809):239-247, 2000.   DOI   ScienceOn
36 Puri, A., Sahai, R., Singh, K.L., Saxena, K.C. Immunostimulant activity of dry fruits and plant materials used in indian traditional medical system for mothers after child birth and invalids. J Ethnopharmacol. 71: 89-92, 2000.   DOI   ScienceOn
37 全國韓醫科大學 共同敎材編纂委員會 共編, 本草學, 서울, 永林社, pp 233-234, 1991.
38 鄭普變 辛民敎共編, 鄕藥(生藥)大辭典, 서울, 圖書出版 永林社, pp 938-940, 1990.
39 Lee, S.E., Ju, E.M., Kim, J.H. Antioxidant activity of extracts from Euryale ferox seed. Exp Mol Med. 34: 100-106, 2002.   DOI   ScienceOn
40 Halliwell, B., Gutteridga, J.M. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 219: 1-14, 1984.   DOI