• Title/Summary/Keyword: immune functions

Search Result 565, Processing Time 0.026 seconds

Anti-inflammatory and Antioxidant Effects of Clam Worm Extract Treated with Peptidoglycan (펩티도글리칸 처리된 갯지렁이 추출물의 항염증 및 항산화 효과)

  • Kim, Se-woong;Sapkota, Mahesh;Yang, Ming;Li, Liang;Soh, Yunjo
    • Korean Journal of Pharmacognosy
    • /
    • v.48 no.3
    • /
    • pp.187-194
    • /
    • 2017
  • Peptidoglycan in inserts and mammals is well known to improve biological functions in the host's immune system. However, it is unclear how Peptidoglycan exerted its anti-inflammatory capacity especially in clam worm (Marphysa sanguinea). In this experiment, the anti-inflammatory and antioxidant effects of clam worm extract treated with (PCWE) peptidoglycan (Micrococcus luteus) in RAW264.7 cells were examined by measuring MDA, catalase, SOD, GSH-Px and inflammatory cytokines (nitric oxide, iNOS, interleukin-$1{\beta}$ and tumor necrosis factor-${\alpha}$). PCWE significantly increased the activities of catalase, SOD and GSH-Px and decreased the level of MDA. Interestingly, PCWE induced activities of SOD and GSH-Px more than clam worm extract without peptidoglycan (CWE). In addition, PCWE decreased NO production, iNOS, COX-2, TNF-${\alpha}$ and IL-$1{\beta}$ better than CWE. Taken together, these results indicate that PCWE has the potential as a natural antioxidant and a therapeutic for inflammation-related diseases.

Effects of CD26 in Parthenogenetically Activated Porcine Embryos

  • Park, Mi-Ryung;Im, Ji-Hyun;Chung, Hak-Jae;Kim, Kyong-Woon;Byun, Sung June;Hwang, Seongsoo;Im, Gi-Sun
    • Journal of Embryo Transfer
    • /
    • v.31 no.4
    • /
    • pp.319-322
    • /
    • 2016
  • CD26, also known as Dipeptidyl peptidase IV (DPP-4), is a cell surface glycoprotein that belongs to the serine protease family and has wide spread organ distribution throughout the body. CD26 was previously characterized in immune cells but also has important metabolic functions which are not yet fully understood. Thus, we investigated the effect of CD26 in porcine parthenogenetic embryos. We attempted CD26 downregulation of porcine embryos by siRNA, and evaluated CD26 suppression of developmental competencies. Although the porcine embryos injected with CD26 siRNA were able to develop to the early stage, these embryos were decreased to form blastocysts. Our results indicated that CD26 is one of factors for the regulation of development of porcine embryos.

Prognostic Significance of Peripheral Blood Flow Cytometry Parameters in Patients with Non-Metastatic Breast Cancer

  • Engin, Huseyin;Bilir, Cemil;Tekin, Ishak Ozel
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7645-7649
    • /
    • 2013
  • Background: Immune functions and their relation to prognosis in breast cancer patients have become areas of great interest in recent years. Correlations between survival outcomes and peripheral blood flow cytometry parameters are therefore of interest. Here we focused on patients with non-metastatic breast cancer (BC). Materials and Methods: A total of 29 patients with pathological confirmed breast carcinoma and flow cytometry data were assessed for overall survival (OS) and progression free survival (PFS). Results: The median age of the patients was 54 years (range, 29-83). Multivariate analysis revealed that OS was significantly associated with absolute cytotoxic T cell count (95%CI, coef 2.26, p=0.035), tumor size (95%CI, coef -14.5, p 0.004), chemotherapy (95%CI, coef 12.9, p 0.0001), MFI of CD4 (95%CI, coef -5.1, P 0.04), MFI of HLA DR (95%CI, coef -5.9, p 0.008) and tumor grade (95%CI, coef -13, P 0.049) with R-Sq(adj)=67%. Similar findings were obtained for PFS. Conclusions: OS and PFS were significantly associated with tumor grade, tumor size, chemotherapy, MFI of CD4, HLA DR and absolute cytotoxic T cell count. The study revealed that MFI of basic CD markers and absolute cytotoxic T cell number may be a prognostic factors in women with non-metastatic BC.

Differential Expression of Nuclear Receptors in T Helper Cells

  • Hwang, Soo-Suk;Kim, Young-Uk;Lee, Won-Yong;Lee, Gap-Ryol
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.2
    • /
    • pp.208-214
    • /
    • 2009
  • Steroid hormones have long been known to have a profound influence on the immune system. Although the functions of the nuclear receptors in the development of T cells are fairly well studied, the differential expression of these receptors in T helper cells is poorly understood. Here, we investigated the differential expression of nuclear receptors and coregulators in Th1 and Th2 cells by genome-wide micro array analysis. The result showed that several nuclear receptors and coregulators are differentially expressed in these cells. The result was confirmed by RT-PCR. The result showed that $RXR{\alpha}$ is highly expressed in Th2 cells. Overexpression of $RXR{\alpha}$ in a Jurkat human T cell line induced IL4 but not IFN-${\gamma}$ gene expression, suggesting that $RXR{\alpha}$ plays a selective role in Th1 and Th2 differentiation. In summary, these results suggest that Th1/Th2 differentiation is influenced by differential regulation of nuclear receptors and coregulators.

Zinc Increases Chemotactic Activity of Porcine Peripheral Blood Polymorphonuclear Cells

  • Seo, Dong-Hee;Kang, Byeong-Teck;Kang, Ji-Houn;Yang, Mhan-Pyo
    • Journal of Veterinary Clinics
    • /
    • v.35 no.5
    • /
    • pp.195-199
    • /
    • 2018
  • Zinc is necessary for normal functions in the immune system. The objective of the study is to examine the effect of zinc on the chemotactic activity of porcine peripheral blood polymorphonuclear cells (PMNs). A modified Boyden chamber was used to determine the directional migration distance of PMNs. Various concentrations of zinc showed no chemotactic activity to PMNs. However, culture supernatant from peripheral blood mononuclear cells (PBMCs) treated with zinc remarkably increased the chemotactic activity of PMNs when compared with culture supernatant from PBMCs treated without zinc. Culture supernatant from PBMCs treated without zinc also increased the migration distance of PMNs relative to vehicle control (medium alone). Increasing effect in chemotactic activity of PMNs by culture supernatant from PBMCs treated with zinc was inhibited by treatment of porcine anti-interleukin (IL)-8 polyclonal antibody (pAb). This effect was not affected by heat treatment ($4-85^{\circ}C$). This corresponded with heat stable physical characteristics of IL-8. These results suggest that zinc can upregulate the chemotaxis of PMNs, which is primary mediated by IL-8 chemotactic factor released from PBMCs treated with zinc.

Signaling for Synergistic Activation of Natural Killer Cells

  • Kwon, Hyung-Joon;Kim, Hun Sik
    • IMMUNE NETWORK
    • /
    • v.12 no.6
    • /
    • pp.240-246
    • /
    • 2012
  • Natural killer (NK) cells play a pivotal role in early surveillance against virus infection and cellular transformation, and are also implicated in the control of inflammatory response through their effector functions of direct lysis of target cells and cytokine secretion. NK cell activation toward target cell is determined by the net balance of signals transmitted from diverse activating and inhibitory receptors. A distinct feature of NK cell activation is that stimulation of resting NK cells with single activating receptor on its own cannot mount natural cytotoxicity. Instead, specific pairs of co-activation receptors are required to unleash NK cell activation via synergy- dependent mechanism. Because each co-activation receptor uses distinct signaling modules, NK cell synergy relies on the integration of such disparate signals. This explains why the study of the mechanism underlying NK cell synergy is important and necessary. Recent studies revealed that NK cell synergy depends on the integration of complementary signals converged at a critical checkpoint element but not on simple amplification of the individual signaling to overcome intrinsic activation threshold. This review focuses on the signaling events during NK cells activation and recent advances in the study of NK cell synergy.

T-Cell Dysfunction and Inhibitory Receptors in Hepatitis C Virus Infection

  • Lee, Jino;Suh, William I.;Shin, Eui-Cheol
    • IMMUNE NETWORK
    • /
    • v.10 no.4
    • /
    • pp.120-125
    • /
    • 2010
  • Dysfunction of the virus-specific T cells is a cardinal feature in chronic persistent viral infections such as one caused by hepatitis C virus (HCV). In chronic HCV infection, virus-specific dysfunctional CD8 T cells often overexpress various inhibitory receptors. Programmed cell death 1 (PD-1) was the first among these inhibitory receptors that were identified to be overexpressed in functionally impaired T cells. The roles of other inhibitory receptors such as cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) and T cell immunoglobulin and mucin domain-containing molecule 3 (Tim-3) have also been demonstrated in T-cell dysfunctions that occur in chronic HCV patients. Blocking these inhibitory receptors in vitro restores the functions of HCV-specific CD8 T cells and allows enhanced proliferation, cytolytic activity and cytokine production. Therefore, the blockade of the inhibitory receptors is considered as a novel strategy for the treatment of chronic HCV infection.

Preclinical Efficacy and Mechanisms of Mesenchymal Stem Cells in Animal Models of Autoimmune Diseases

  • Lee, Hong Kyung;Lim, Sang Hee;Chung, In Sung;Park, Yunsoo;Park, Mi Jeong;Kim, Ju Young;Kim, Yong Guk;Hong, Jin Tae;Kim, Youngsoo;Han, Sang-Bae
    • IMMUNE NETWORK
    • /
    • v.14 no.2
    • /
    • pp.81-88
    • /
    • 2014
  • Mesenchymal stem cells (MSCs) are present in diverse tissues and organs, including bone marrow, umbilical cord, adipose tissue, and placenta. MSCs can expand easily in vitro and have regenerative stem cell properties and potent immunoregulatory activity. They inhibit the functions of dendritic cells, B cells, and T cells, but enhance those of regulatory T cells by producing immunoregulatory molecules such as transforming growth factor-${\beta}$, hepatic growth factors, prostaglandin $E_2$, interleukin-10, indolamine 2,3-dioxygenase, nitric oxide, heme oxygenase-1, and human leukocyte antigen-G. These properties make MSCs promising therapeutic candidates for the treatment of autoimmune diseases. Here, we review the preclinical studies of MSCs in animal models for systemic lupus erythematosus, rheumatoid arthritis, Crohn's disease, and experimental autoimmune encephalomyelitis, and summarize the underlying immunoregulatory mechanisms.

TRIF Deficiency does not Affect Severity of Ovalbumin-induced Airway Inflammation in Mice

  • Kim, Tae-Hyoun;Kim, Dong-Jae;Park, Jae-Hak;Park, Jong-Hwan
    • IMMUNE NETWORK
    • /
    • v.14 no.5
    • /
    • pp.249-254
    • /
    • 2014
  • Allergic asthma is a chronic pulmonary inflammatory disease characterized by reversible airway obstruction, hyperresponsiveness and eosinophils infiltration. Toll-like receptors (TLRs) signaling are closely associated with asthma and have emerged as a novel therapeutic target in allergic disease. The functions of TLR3 and TLR4 in allergic airway inflammation have been studied; however, the precise role of TIR-domain-containing adapter-inducing interferon-${\beta}$ (TRIF), the adaptor molecule for both TLR3 and TLR4, is not yet fully understood. To investigate this, we developed a mouse model of OVA-induced allergic airway inflammation and compared the severity of allergic airway inflammation in WT and $TRIF^-/^-$ mice. Histopathological assessment revealed that the severity of inflammation in airway inflammation in TRIF-deficient mice was comparable to that in WT mice. The total number of cells recovered from bronchoalveolar lavage fluid did not differ between WT and TRIF-deficient mice. Moreover, TRIF deficiency did not affect Th1 and Th2 cytokine production in lung tissue nor the level of serum OVA-specific IgE, $IgG_1$ and $IgG_{2c}$. These findings suggest that TRIF-mediated signaling may not be critical for the development of allergic airway inflammation.

PKD2 interacts with Lck and regulates NFAT activity in T cells

  • Li, Qing;Sun, Xiaoqing;Wu, Jun;Lin, Zhixin;Luo, Ying
    • BMB Reports
    • /
    • v.42 no.1
    • /
    • pp.35-40
    • /
    • 2009
  • Protein kinase D2 (PKD2) is a member of the PKD serine/threonine protein kinase family that has been implicated in the regulation of a variety of cellular processes including proliferation, survival, protein trafficking and immune response. In the present study, we report a novel interaction between PKD2 and Lck, a member of the Src tyrosine protein kinase family that is predominantly expressed in T cells. This interaction involved the C-terminal kinase domains of both PKD2 and Lck. Moreover, co-expression of Lck enhanced the tyrosine phosphorylation of PKD2 and increased its kinase activity. Finally, we report that PKD2 enhanced T cell receptor (TCR)-induced nuclear factor of T cell (NFAT) activity in Jurkat T cells. These results suggested that Lck regulated the activity of PKD2 by tyrosine phosphorylation, which in turn may have modulated the physiological functions of PKD2 during TCR-induced T cell activation.