Browse > Article
http://dx.doi.org/10.4110/in.2014.14.5.249

TRIF Deficiency does not Affect Severity of Ovalbumin-induced Airway Inflammation in Mice  

Kim, Tae-Hyoun (Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University)
Kim, Dong-Jae (Department of Biochemistry, College of Medicine, Konyang University)
Park, Jae-Hak (Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University)
Park, Jong-Hwan (Department of Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University)
Publication Information
IMMUNE NETWORK / v.14, no.5, 2014 , pp. 249-254 More about this Journal
Abstract
Allergic asthma is a chronic pulmonary inflammatory disease characterized by reversible airway obstruction, hyperresponsiveness and eosinophils infiltration. Toll-like receptors (TLRs) signaling are closely associated with asthma and have emerged as a novel therapeutic target in allergic disease. The functions of TLR3 and TLR4 in allergic airway inflammation have been studied; however, the precise role of TIR-domain-containing adapter-inducing interferon-${\beta}$ (TRIF), the adaptor molecule for both TLR3 and TLR4, is not yet fully understood. To investigate this, we developed a mouse model of OVA-induced allergic airway inflammation and compared the severity of allergic airway inflammation in WT and $TRIF^-/^-$ mice. Histopathological assessment revealed that the severity of inflammation in airway inflammation in TRIF-deficient mice was comparable to that in WT mice. The total number of cells recovered from bronchoalveolar lavage fluid did not differ between WT and TRIF-deficient mice. Moreover, TRIF deficiency did not affect Th1 and Th2 cytokine production in lung tissue nor the level of serum OVA-specific IgE, $IgG_1$ and $IgG_{2c}$. These findings suggest that TRIF-mediated signaling may not be critical for the development of allergic airway inflammation.
Keywords
TRIF; Allergic airway inflammation; Th2;
Citations & Related Records
연도 인용수 순위
  • Reference
1 To, T., S. Stanojevic, G. Moores, A. S. Gershon, E. D. Bateman, A. A. Cruz, and L. P. Boulet. 2012. Global asthma prevalence in adults: findings from the cross-sectional world health survey. BMC Public Health 12: 204.   DOI
2 Shifren, A., C. Witt, C. Christie, and M. Castro. 2012. Mechanisms of remodeling in asthmatic airways. J. Allergy (Cairo) 2012: 316049.
3 Holgate, S. T. 2012. Innate and adaptive immune responses in asthma. Nat. Med. 18: 673-683.   DOI
4 Agrawal, D. K., and Z. Shao. 2010. Pathogenesis of allergic airway inflammation. Curr. Allergy Asthma Rep. 10: 39-48.   DOI
5 Kuhl, K., and N. A. Hanania. 2012. Targeting IgE in asthma. Curr. Opin. Pulm. Med. 18: 1-5.   DOI
6 Yazdanbakhsh, M., P. G. Kremsner, and R. van Ree. 2002. Allergy, parasites, and the hygiene hypothesis. Science 296: 490-494.   DOI   ScienceOn
7 Strachan, D. P. 1989. Hay fever, hygiene, and household size. BMJ 299: 1259-1260.   DOI   ScienceOn
8 Matricardi, P. M., F. Rosmini, S. Riondino, M. Fortini, L. Ferrigno, M. Rapicetta, and S. Bonini. 2000. Exposure to foodborne and orofecal microbes versus airborne viruses in relation to atopy and allergic asthma: epidemiological study. BMJ 320: 412-417.   DOI
9 Sato, S., M. Sugiyama, M. Yamamoto, Y. Watanabe, T. Kawai, K. Takeda, and S. Akira. 2003. Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-kappa B and IFN-regulatory factor-3, in the Toll-like receptor signaling. J. Immunol. 171: 4304-4310.   DOI
10 Kawai, T., and S. Akira. 2006. TLR signaling. Cell Death Differ. 13: 816-825.   DOI   ScienceOn
11 Kumar, H., T. Kawai, and S. Akira. 2009. Pathogen recognition in the innate immune response. Biochem. J. 420: 1-16.   DOI   ScienceOn
12 Eisenbarth, S. C., D. A. Piggott, J. W. Huleatt, I. Visintin, C. A. Herrick, and K. Bottomly. 2002. Lipopolysaccharide-enhanced, toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen. J. Exp. Med. 196: 1645-1651.   DOI   ScienceOn
13 Torres, D., A. Dieudonne, B. Ryffel, E. Vilain, M. Si-Tahar, M. Pichavant, P. Lassalle, F. Trottein, and P. Gosset. 2010. Double-stranded RNA exacerbates pulmonary allergic reaction through TLR3: implication of airway epithelium and dendritic cells. J. Immunol. 185: 451-459.   DOI
14 Hollingsworth, J. W. 2nd, D. N. Cook, D. M. Brass, J. K. Walker, D. L. Morgan, W. M. Foster, and D. A. Schwartz. 2004. The role of Toll-like receptor 4 in environmental airway injury in mice. Am. J. Respir. Crit. Care Med. 170: 126-132.   DOI
15 Bortolatto, J., E. Borducchi, D. Rodriguez, A. C. Keller, E. Faquim-Mauro, K. R. Bortoluci, D. Mucida, E. Gomes, A. Christ, S. Schnyder-Candrian, B. Schnyder, B. Ryffel, and M. Russo. 2008. Toll-like receptor 4 agonists adsorbed to aluminium hydroxide adjuvant attenuate ovalbumin-specific allergic airway disease: role of MyD88 adaptor molecule and interleukin-12/interferon-gamma axis. Clin. Exp. Allergy 38: 1668-1679.   DOI   ScienceOn
16 Abston, E. D., M. J. Coronado, A. Bucek, D. Bedja, J. Shin, J. B. Kim, E. Kim, K. L. Gabrielson, D. Georgakopoulos, W. Mitzner, and D. Fairweather. 2012. Th2 regulation of viral myocarditis in mice: different roles for TLR3 versus TRIF in progression to chronic disease. Clin. Dev. Immunol. 2012: 129486.
17 Kaisho, T., K. Hoshino, T. Iwabe, O. Takeuchi, T. Yasui, and S. Akira. 2002. Endotoxin can induce MyD88-deficient dendritic cells to support T(h)2 cell differentiation. Int. Immunol. 14: 695-700.   DOI
18 Abbas, A. K., K. M. Murphy, and A. Sher. 1996. Functional diversity of helper T lymphocytes. Nature 383: 787-793.   DOI   ScienceOn
19 Wills-Karp, M. 2004. Interleukin-13 in asthma pathogenesis. Immunol. Rev. 202: 175-190.   DOI   ScienceOn
20 Takatsu, K., S. Takaki, and Y. Hitoshi. 1994. Interleukin-5 and its receptor system: implications in the immune system and inflammation. Adv. Immunol. 57: 145-190.   DOI
21 Coffman, R. L., D. A. Lebman, and P. Rothman. 1993. Mechanism and regulation of immunoglobulin isotype switching. Adv. Immunol. 54: 229-270.   DOI
22 Matsumoto, K., and H. Inoue. 2014. Viral infections in asthma and COPD. Respir. Investig. 52: 92-100.   DOI
23 Nicholson, K. G., J. Kent, and D. C. Ireland. 1993. Respiratory viruses and exacerbations of asthma in adults. BMJ 307: 982-986.   DOI   ScienceOn
24 Atmar, R. L., E. Guy, K. K. Guntupalli, J. L. Zimmerman, V. D. Bandi, B. D. Baxter, and S. B. Greenberg. 1998. Respiratory tract viral infections in inner-city asthmatic adults. Arch. Intern. Med. 158: 2453-2459.   DOI   ScienceOn
25 Armann, J., and E. von Mutius. 2010. Do bacteria have a role in asthma development? Eur. Respir. J. 36: 469-471.   DOI
26 Korppi, M. 2009. Management of bacterial infections in children with asthma. Expert Rev. Anti. Infect. Ther. 7: 869-877.   DOI
27 Johnston, S. L., F. Blasi, P. N. Black, R. J. Martin, D. J. Farrell, and R. B. Nieman. 2006. The effect of telithromycin in acute exacerbations of asthma. N. Engl. J. Med. 354: 1589-1600.   DOI   ScienceOn
28 Kim, Y. K., S. Y. Oh, S. G. Jeon, H. W. Park, S. Y. Lee, E. Y. Chun, B. Bang, H. S. Lee, M. H. Oh, Y. S. Kim, J. H. Kim, Y. S. Gho, S. H. Cho, K. U. Min, Y. Y. Kim, and Z. Zhu. 2007. Airway exposure levels of lipopolysaccharide determine type 1 versus type 2 experimental asthma. J. Immunol. 178: 5375-5382.   DOI
29 Reed, C. E., and D. K. Milton. 2001. Endotoxin-stimulated innate immunity: A contributing factor for asthma. J. Allergy Clin. Immunol. 108: 157-166.   DOI   ScienceOn
30 Delayre-Orthez, C., F. de Blay, N. Frossard, and F. Pons. 2004. Dose-dependent effects of endotoxins on allergen sensitization and challenge in the mouse. Clin. Exp. Allergy 34: 1789-1795.   DOI   ScienceOn
31 O'Neill, L. A. 2003. Therapeutic targeting of Toll-like receptors for inflammatory and infectious diseases. Curr. Opin. Pharmacol. 3: 396-403.   DOI
32 Shalaby, K. H., A. Allard-Coutu, M. J. O'Sullivan, E. Nakada, S. T. Qureshi, B. J. Day, and J. G. Martin. 2013. Inhaled birch pollen extract induces airway hyperresponsiveness via oxidative stress but independently of pollen-intrinsic NADPH oxidase activity, or the TLR4-TRIF pathway. J. Immunol. 191: 922-933.   DOI
33 Sahiner, U. M., A. Semic-Jusufagic, J. A. Curtin, E. Birben, D. Belgrave, C. Sackesen, A. Simpson, T. S. Yavuz, C. A. Akdis, A. Custovic, and O. Kalayci. 2014. Polymorphisms of endotoxin pathway and endotoxin exposure: in vitro IgE synthesis and replication in a birth cohort. Allergy. doi: 10.1111/all.12504.
34 Hsia, B. J., G. S. Whitehead, S. Y. Thomas, K. Nakano, K. M. Gowdy, J. J. Aloor, H. Nakano, and D. N. Cook. 2014. Trif-dependent induction of Th17 immunity by lung dendritic cells. Mucosal Immunol. doi: 10.1038/mi.2014.56.
35 Chung, F. 2001. Anti-inflammatory cytokines in asthma and allergy: interleukin-10, interleukin-12, interferon-gamma. Mediators Inflamm. 10: 51-59.   DOI
36 Iwasaki, A., and R. Medzhitov. 2004. Toll-like receptor control of the adaptive immune responses. Nat. Immunol. 5: 987-995.   DOI   ScienceOn
37 Stowell, N. C., J. Seideman, H. A. Raymond, K. A. Smalley, R. J. Lamb, D. D. Egenolf, P. J. Bugelski, L. A. Murray, P. A. Marsters, R. A. Bunting, R. A. Flavell, L. Alexopoulou, L. R. San Mateo, D. E. Griswold, R. T. Sarisky, M. L. Mbow, and A. M. Das. 2009. Long-term activation of TLR3 by poly(I:C) induces inflammation and impairs lung function in mice. Respir. Res. 10: 43.   DOI   ScienceOn
38 Joshi, P., A. Shaw, A. Kakakios, and D. Isaacs. 2003. Interferon-gamma levels in nasopharyngeal secretions of infants with respiratory syncytial virus and other respiratory viral infections. Clin. Exp. Immunol. 131: 143-147.   DOI
39 Akira, S., and K. Takeda. 2004. Toll-like receptor signalling. Nat. Rev. Immunol. 4: 499-511.   DOI   ScienceOn
40 Hammad, H., M. Chieppa, F. Perros, M. A. Willart, R. N. Germain, and B. N. Lambrecht. 2009. House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat. Med. 15: 410-416.   DOI   ScienceOn