Browse > Article

Anti-inflammatory and Antioxidant Effects of Clam Worm Extract Treated with Peptidoglycan  

Kim, Se-woong (Department of Dental Pharmacology, School of Dentistry, Chonbuk National University)
Sapkota, Mahesh (Department of Dental Pharmacology, School of Dentistry, Chonbuk National University)
Yang, Ming (Department of Dental Pharmacology, School of Dentistry, Chonbuk National University)
Li, Liang (Department of Dental Pharmacology, School of Dentistry, Chonbuk National University)
Soh, Yunjo (Department of Dental Pharmacology, School of Dentistry, Chonbuk National University)
Publication Information
Korean Journal of Pharmacognosy / v.48, no.3, 2017 , pp. 187-194 More about this Journal
Abstract
Peptidoglycan in inserts and mammals is well known to improve biological functions in the host's immune system. However, it is unclear how Peptidoglycan exerted its anti-inflammatory capacity especially in clam worm (Marphysa sanguinea). In this experiment, the anti-inflammatory and antioxidant effects of clam worm extract treated with (PCWE) peptidoglycan (Micrococcus luteus) in RAW264.7 cells were examined by measuring MDA, catalase, SOD, GSH-Px and inflammatory cytokines (nitric oxide, iNOS, interleukin-$1{\beta}$ and tumor necrosis factor-${\alpha}$). PCWE significantly increased the activities of catalase, SOD and GSH-Px and decreased the level of MDA. Interestingly, PCWE induced activities of SOD and GSH-Px more than clam worm extract without peptidoglycan (CWE). In addition, PCWE decreased NO production, iNOS, COX-2, TNF-${\alpha}$ and IL-$1{\beta}$ better than CWE. Taken together, these results indicate that PCWE has the potential as a natural antioxidant and a therapeutic for inflammation-related diseases.
Keywords
Peptidoglycan; Clam worm extract; Anti-inflammation; Antioxidant;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Kurata, S. (2004) Recognition of infectious non-self and activation of immune responses by peptidoglycan recognition protein (PGRP)-family members in Drosophila. Dev. Comp. Immunol. 28: 89-95.   DOI
2 Mosser, D. M. (2003) The many faces of macrophage activation. J. Leukoc Biol. 73: 209-212.   DOI
3 Bystrom, J., Evans, I., Newson, J., Stables, M., Toor, I., van Rooijen, N., Crawford, M., Colville-Nash, P., Farrow, S. and Gilroy, D. W. (2008) Resolution-phase macrophages possess a unique inflammatory phenotype that is controlled by cAMP. Blood 112: 4117-4127.   DOI
4 Kwqamata, H., Ochiai, H., Mantani, N. and Terasawa, K. (2000) Enhanced expression of inducible nitric oxide synthase by Juzen-taiho-to in LPS-activated RAW264.7 cells, a murine macrophage cell line. Am. J. Chin. Med. 28: 217-226.   DOI
5 Chiou, W. F., Chou, C. J. and Chen, C. F. (2001) Camptothecin suppresses nitric oxide biosynthesis in RAW264.7 macrophages. Life Sci. 69: 625-635.   DOI
6 Zhang, S., Shen, Z., Hu, G., Liu, R. and Zhang, X. (2009) Effects of endogenous glucocorticoids on allergic inflammation and T(H)1 /T(H)2 balance in airway allergic disease. Ann. Allergy Asthma Immunol. 103: 525-534.   DOI
7 Halliwell, B. and Gutteridge, J. M. (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 186: 1-85
8 Lee, S. J., Bai, S. K., Lee, K. S., Namkoong, S., Na, H. J., Ha, K. S., Han, J. A., Yim, S. V., Chang, K., Kwon, Y. G., Lee, S. K. and Kim, Y. M. (2003) Astaxanthin inhibits nitric oxide production and inflammatory gene expression by suppressing $I{\kappa}B$ kinase-dependent NF-${\kappa}B$ activation. Mol. Cells 16: 97-105.
9 Miesel, R., Murphy, M. P. and Kroeger, H. (1996) Enhanced mitochondrial radical production in patients which rheumatoid arthritis correlates with elevated levels of tumor necrosis factor alpha in plasma. Free Radical Res. 25: 161-169.   DOI
10 Chinetti-Gbaguidi, G., Colin. S. and Staels, B. (2015) Macrophage subsets in atherosclerosis. Nat. Rev. Cardiol. 12: 10-17.   DOI
11 Chang, H. Y., Lee, H. N., Kim, W. and Surh, Y. J. (2015) Docosahexaenoic acid induces M2 macrophage polarization through peroxisome proliferator-activated receptor ${\gamma}$ activation. Life Sci. 120: 39-47.   DOI
12 Zaidman-Remy, A., Herve, M., Poidevin, M., Pili-Floury, S., Kim, M. S., Blanot, D., Oh, B. H., Ueda, R., Mengin-Lecreulx, D. and Lemaitre, B. (2006) The Drosophila amidase PGRP-LB modulates the immune response to bacterial infection. Immunity 24: 463-473.   DOI
13 Pan, W., Liu, X., Ge, F., Han, J. and Zheng, T. (2004) Perinerin, a novel antimicrobial peptide purified from the clamworm Perinereis aibuhitensis grube and its partial characterization. J. Biochem. 135: 297-304.   DOI
14 Zhou, Q., Li, M. and Xi, T. (2009) Cloning and expression of a clamworm antimicrobial peptide perinerin in Pichia pastoris. Curr. Microbiol. 58: 384-388.   DOI
15 Yoshimura, A., Lien, E., Ingalls R. R., Tuomanen, E., Dziarski, R. and Golenbock, D. (1999) Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J. Immunol. 163: 1-5.
16 Titos, E., Rius, B., Gonzalez-Periz, A., Lopez-Vicario, C., Moran-Salvador, E., Martinez-Clemente, M., Arroyo, V. and Claria, J. (2011) Resolvin D1 and its precursor docosahexaenoic acid promote resolution of adipose tissue inflammation by eliciting macrophage polarization toward an M2-like phenotype. J. Immunol. 187: 5408-5418.   DOI
17 Dziarski, R., Ulmer, A. J. and Gupta, D. (2000) Interactions of CD14 with components of gram-positive bacteria. Chem. Immunol. 74: 83-107.
18 Wang, J. E., Jorgensen, P. F., Almlof, M., Thiemermann, C., Foster, S. J., Aasen, A. O. and Solberg R. (2000) Peptidoglycan and lipoteichoic acid from Staphylococcus aureus induce tumor necrosis factor alpha, interleukin 6 (IL-6), and IL-10 production in both T cells and monocytes in a human whole blood model. Infect. Immun. 68: 3965-3970.   DOI
19 Mellroth, P., Karlsson, J. and Steiner, H. (2003) A scavenger function for a Drosophila peptidoglycan recognition protein. J. Biol. Chem. 278: 7059-7064.   DOI
20 Bischoff, V., Vignal, C., Duvic, B., Boneca, I. G., Hoffmann, J. A. and Royet, J. (2006) Down regulation of the Drosophila immune response by peptidoglycan-recognition proteins SC1 and SC2. PLoS Pathog. 2: e14.   DOI
21 Kim, S. W., Sapkota, M., Li, L., Yang, M., Park, C. I. and Soh, Y. (2016) Anti-inflammatory and antioxidant effects of clam worm extract in macrophage RAW264.7 cells. Kor. J. Pharmacogn. 47: 150-157.
22 Kwon, M. G., Seo, J. S., Youn, H. J., Park, C. I., Jeong, J. M. and Bae, J. S. (2016) Effect of the polychaete antimicrobial peptide as feed additives on olive flounder and black rockfish. immune activity. JFMSE 28: 1640-1650.   DOI
23 Prasad, K., Mantha, S. V., Muir, A. D. and Westcott, N. D. (2000) Protective effect of secoisolariciresinol diglucoside against streptozotocin-induced diabetes and its mechanism. Mol. Cell Biochem. 206: 141-149.   DOI
24 Aebi, H. (1984) Catalase in vitro. Methods Enzymol. 105: 121-126.
25 Wang, L., Ming, L. X., Jie, L., Wang, Y., Jian, H. H. and Wang, M. H. (2015) Sonchus asper extract inhibits LPS induced oxidative stress and pro-inflammatory cytokine production in RAW264.7 macrophages. Nutr. Res. Pract. 9: 579-585.   DOI
26 Tagesson, C., Kallberg, M. and Wingren, G. (1996) Urinary malondialdehyde and 8-hydroxydeoxyguanosine as potential markers of oxidative stress in industrial art glass workers. Int. Arch. Occup. Environ. Health 69: 5-13.   DOI
27 Cooper, E. L. (2004) Complementary and alternative medicine, when rigorous, can be science. Evid. Based Complement Alternat. Med. 1: 1-4.   DOI
28 Franzotti, E. M., Santos, C. V., Rodrigues, H. M., Mourao, R. H., Andrade, M. R. and Antoniolli, A. R. (2000) Anti-inflammatory, analgesic activity and acute toxicity of Sida cordifolia L. (Malva-branca). J. Ethnopharmacol. 72: 273-277.   DOI