DOI QR코드

DOI QR Code

Signaling for Synergistic Activation of Natural Killer Cells

  • Kwon, Hyung-Joon (Department of Medicine, Graduate School, University of Ulsan College of Medicine) ;
  • Kim, Hun Sik (Department of Medicine, Graduate School, University of Ulsan College of Medicine)
  • Received : 2012.11.01
  • Accepted : 2012.11.15
  • Published : 2012.12.31

Abstract

Natural killer (NK) cells play a pivotal role in early surveillance against virus infection and cellular transformation, and are also implicated in the control of inflammatory response through their effector functions of direct lysis of target cells and cytokine secretion. NK cell activation toward target cell is determined by the net balance of signals transmitted from diverse activating and inhibitory receptors. A distinct feature of NK cell activation is that stimulation of resting NK cells with single activating receptor on its own cannot mount natural cytotoxicity. Instead, specific pairs of co-activation receptors are required to unleash NK cell activation via synergy- dependent mechanism. Because each co-activation receptor uses distinct signaling modules, NK cell synergy relies on the integration of such disparate signals. This explains why the study of the mechanism underlying NK cell synergy is important and necessary. Recent studies revealed that NK cell synergy depends on the integration of complementary signals converged at a critical checkpoint element but not on simple amplification of the individual signaling to overcome intrinsic activation threshold. This review focuses on the signaling events during NK cells activation and recent advances in the study of NK cell synergy.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea

References

  1. Krzewski, K. and J. E. Coligan. 2012. Human NK cell lytic granules and regulation of their exocytosis. Front. Immunol. 3: 335.
  2. Kohl, S., L. S. Loo, F. S. Schmalstieg, and D. C. Anderson. 1986. The genetic deficiency of leukocyte surface glycoprotein Mac-1, LFA-1, p150,95 in humans is associated with defective antibody-dependent cellular cytotoxicity in vitro and defective protection against herpes simplex virus infection in vivo. J. Immunol. 137: 1688-1694.
  3. Anderson, D. C., F. C. Schmalsteig, M. J. Finegold, B. J. Hughes, R. Rothlein, L. J. Miller, S. Kohl, M. F. Tosi, R. J. Jacobs, and T. C. Waldrop, et al. 1985. The severe and moderate phenotypes of heritable Mac-1, LFA-1 deficiency: their quantitative definition and relation to leukocyte dysfunction and clinical features. J. Infect. Dis. 152: 668-689. https://doi.org/10.1093/infdis/152.4.668
  4. Bunting, M., E. S. Harris, T. M. McIntyre, S. M. Prescott, and G. A. Zimmerman. 2002. Leukocyte adhesion deficiency syndromes: adhesion and tethering defects involving beta 2 integrins and selectin ligands. Curr. Opin. Hematol. 9: 30-35. https://doi.org/10.1097/00062752-200201000-00006
  5. Inwald, D., E. G. Davies, and N. Klein. 2001. Demystified. adhesion molecule deficiencies. Mol. Pathol. 54: 1-7. https://doi.org/10.1136/mp.54.1.1
  6. Orange, J. S. 2002. Human natural killer cell deficiencies and susceptibility to infection. Microbes Infect. 4: 1545-1558. https://doi.org/10.1016/S1286-4579(02)00038-2
  7. Parolini, S., C. Bottino, M. Falco, R. Augugliaro, S. Giliani, R. Franceschini, H. D. Ochs, H. Wolf, J. Y. Bonnefoy, R. Biassoni, L. Moretta, L. D. Notarangelo, and A. Moretta. 2000. X-linked lymphoproliferative disease. 2B4 molecules displaying inhibitory rather than activating function are responsible for the inability of natural killer cells to kill Epstein-Barr virus-infected cells. J. Exp. Med. 192: 337-346. https://doi.org/10.1084/jem.192.3.337
  8. Bottino, C., M. Falco, S. Parolini, E. Marcenaro, R. Augugliaro, S. Sivori, E. Landi, R. Biassoni, L. D. Notarangelo, L. Moretta, and A. Moretta. 2001. NTB-A [correction of GNTB-A], a novel SH2D1A-associated surface molecule contributing to the inability of natural killer cells to kill Epstein-Barr virus-infected B cells in X-linked lymphoproliferative disease. J. Exp. Med. 194: 235-246. https://doi.org/10.1084/jem.194.3.235
  9. Ruggeri, L., M. Capanni, E. Urbani, K. Perruccio, W. D. Shlomchik, A. Tosti, S. Posati, D. Rogaia, F. Frassoni, F. Aversa, M. F. Martelli, and A. Velardi. 2002. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295: 2097-2100. https://doi.org/10.1126/science.1068440
  10. Igarashi, T., J. Wynberg, R. Srinivasan, B. Becknell, J. P. Jr. McCoy, Y. Takahashi, D. A. Suffredini, W. M. Linehan, M. A. Caligiuri, and R. W. Childs. 2004. Enhanced cytotoxicity of allogeneic NK cells with killer immunoglobulin-like receptor ligand incompatibility against melanoma and renal cell carcinoma cells. Blood 104: 170-177. https://doi.org/10.1182/blood-2003-12-4438
  11. Fischer, L., O. Penack, C. Gentilini, A. Nogai, A. Muessig, E. Thiel, and L. Uharek. 2006. The anti-lymphoma effect of antibody-mediated immunotherapy is based on an increased degranulation of peripheral blood natural killer (NK) cells. Exp. Hematol. 34: 753-759. https://doi.org/10.1016/j.exphem.2006.02.015
  12. Billadeau, D. D. and P. J. Leibson. 2002. ITAMs versus ITIMs: striking a balance during cell regulation. J. Clin. Invest. 109: 161-168. https://doi.org/10.1172/JCI0214843
  13. Vivier, E., J. A. Nunès, and F. Vély. 2004. Natural killer cell signaling pathways. Science 306: 1517-1519. https://doi.org/10.1126/science.1103478
  14. Long, E. O. 2008. Negative signaling by inhibitory receptors: the NK cell paradigm. Immunol. Rev. 224: 70-84. https://doi.org/10.1111/j.1600-065X.2008.00660.x
  15. Lanier, L. L. 2005. NK cell recognition. Annu. Rev. Immunol. 23: 225-274. https://doi.org/10.1146/annurev.immunol.23.021704.115526
  16. Bryceson, Y. T., M. E. March, H. G. Ljunggren, and E. O. Long. 2006. Activation, coactivation, and costimulation of resting human natural killer cells. Immunol. Rev. 214: 73-91. https://doi.org/10.1111/j.1600-065X.2006.00457.x
  17. Burshtyn, D. N., A. M. Scharenberg, N. Wagtmann, S. Rajagopalan, K. Berrada, T. Yi, J. P. Kinet, and E. O. Long. 1996. Recruitment of tyrosine phosphatase HCP by the killer cell inhibitor receptor. Immunity. 4: 77-85. https://doi.org/10.1016/S1074-7613(00)80300-3
  18. Binstadt, B. A., K. M. Brumbaugh, C. J. Dick, A. M. Scharenberg, B. L. Williams, M. Colonna, L. L. Lanier, J. P. Kinet, R. T. Abraham, and P. J. Leibson. 1996. Sequential involvement of Lck and SHP-1 with MHC-recognizing receptors on NK cells inhibits FcR-initiated tyrosine kinase activation. Immunity. 5: 629-638. https://doi.org/10.1016/S1074-7613(00)80276-9
  19. Ting, A. T., L. M. Karnitz, R. A. Schoon, R. T. Abraham, and P. J. Leibson. 1992. Fc gamma receptor activation induces the tyrosine phosphorylation of both phospholipase C (PLC)-gamma 1 and PLC-gamma 2 in natural killer cells. J. Exp. Med. 176: 1751-1755. https://doi.org/10.1084/jem.176.6.1751
  20. Cella, M., K. Fujikawa, I. Tassi, S. Kim, K. Latinis, S. Nishi, W. Yokoyama, M. Colonna, and W. Swat. 2004. Differential requirements for Vav proteins in DAP10- and ITAM-mediated NK cell cytotoxicity. J. Exp. Med. 200: 817-823. https://doi.org/10.1084/jem.20031847
  21. Billadeau, D. D., K. M. Brumbaugh, C. J. Dick, R. A. Schoon, X. R. Bustelo, and P. J. Leibson. 1998. The Vav-Rac1 pathway in cytotoxic lymphocytes regulates the generation of cell-mediated killing. J. Exp. Med. 188: 549-559. https://doi.org/10.1084/jem.188.3.549
  22. Tassi, I., R. Presti, S. Kim, W. M. Yokoyama, S. Gilfillan, and M. Colonna. 2005. Phospholipase C-gamma 2 is a critical signaling mediator for murine NK cell activating receptors. J. Immunol. 175: 749-754. https://doi.org/10.4049/jimmunol.175.2.749
  23. Upshaw, J. L., R. A. Schoon, C. J. Dick, D. D. Billadeau, and P. J. Leibson. 2005. The isoforms of phospholipase C-gamma are differentially used by distinct human NK activating receptors. J. Immunol. 175: 213-218. https://doi.org/10.4049/jimmunol.175.1.213
  24. Wu, J., Y. Song, A. B. Bakker, S. Bauer, T. Spies, L. L. Lanier, and J. H. Phillips. 1999. An activating immunoreceptor complex formed by NKG2D and DAP10. Science 285: 730-732. https://doi.org/10.1126/science.285.5428.730
  25. Upshaw, J. L., L. N. Arneson, R. A. Schoon, C. J. Dick, D. D. Billadeau, and P. J. Leibson. 2006. NKG2D-mediated signaling requires a DAP10-bound Grb2-Vav1 intermediate and phosphatidylinositol-3-kinase in human natural killer cells. Nat. Immunol. 7: 524-532. https://doi.org/10.1038/ni1325
  26. Billadeau, D. D., J. L. Upshaw, R. A. Schoon, C. J. Dick, and P. J. Leibson. 2003. NKG2D-DAP10 triggers human NK cell-mediated killing via a Syk-independent regulatory pathway. Nat. Immunol. 4: 557-564. https://doi.org/10.1038/ni929
  27. Zompi, S., J. A. Hamerman, K. Ogasawara, E. Schweighoffer, V. L. Tybulewicz, J. P. Di Santo, L. L. Lanier, and F. Colucci. 2003. NKG2D triggers cytotoxicity in mouse NK cells lacking DAP12 or Syk family kinases. Nat. Immunol. 4: 565-572. https://doi.org/10.1038/ni930
  28. Chiesa, S., M. Mingueneau, N. Fuseri, B. Malissen, D. H. Raulet, M. Malissen, E. Vivier, and E. Tomasello. 2006. Multiplicity and plasticity of natural killer cell signaling pathways. Blood 107: 2364-2372. https://doi.org/10.1182/blood-2005-08-3504
  29. Claus, M., S. Meinke, R. Bhat, and C. Watzl. 2008. Regulation of NK cell activity by 2B4, NTB-A and CRACC. Front. Biosci. 13: 956-965. https://doi.org/10.2741/2735
  30. Sayos, J., C. Wu, M. Morra, N. Wang, X. Zhang, D. Allen, S. van Schaik, L. Notarangelo, R. Geha, M. G. Roncarolo, H. Oettgen, J. E. De Vries, G. Aversa, and C. Terhorst. 1998. The X-linked lymphoproliferative-disease gene product SAP regulates signals induced through the co-receptor SLAM. Nature 395: 462-469. https://doi.org/10.1038/26683
  31. Eissmann, P., L. Beauchamp, J. Wooters, J. C. Tilton, E. O. Long, and C. Watzl. 2005. Molecular basis for positive and negative signaling by the natural killer cell receptor 2B4 (CD244). Blood 105: 4722-4729. https://doi.org/10.1182/blood-2004-09-3796
  32. Eissmann, P. and C. Watzl. 2006. Molecular analysis of NTB-A signaling: a role for EAT-2 in NTB-A-mediated activation of human NK cells. J. Immunol. 177: 3170-3177. https://doi.org/10.4049/jimmunol.177.5.3170
  33. Roncagalli, R., J. E. Taylor, S. Zhang, X. Shi, R. Chen, M. E. Cruz-Munoz, L. Yin, S. Latour, and A. Veillette. 2005. Negative regulation of natural killer cell function by EAT-2, a SAP-related adaptor. Nat. Immunol. 6: 1002-1010. https://doi.org/10.1038/ni1242
  34. Chan, B., A. Lanyi, H. K. Song, J. Griesbach, M. Simarro- Grande, F. Poy, D. Howie, J. Sumegi, C. Terhorst, and M. J. Eck. 2003. SAP couples Fyn to SLAM immune receptors. Nat. Cell Biol. 5: 155-160. https://doi.org/10.1038/ncb920
  35. Latour, S., R. Roncagalli, R. Chen, M. Bakinowski, X. Shi, P. L. Schwartzberg, D. Davidson, and A. Veillette. 2003. Binding of SAP SH2 domain to FynT SH3 domain reveals a novel mechanism of receptor signalling in immune regulation. Nat. Cell Biol. 5: 149-154. https://doi.org/10.1038/ncb919
  36. Kim, H. S., A. Das, C. C. Gross, Y. T. Bryceson, and E, O. Long. 2010. Synergistic signals for natural cytotoxicity are required to overcome inhibition by c-Cbl ubiquitin ligase. Immunity 32: 175-186. https://doi.org/10.1016/j.immuni.2010.02.004
  37. Shibuya, K., J. Shirakawa, T. Kameyama, S. Honda, S. Tahara- Hanaoka, A. Miyamoto, M. Onodera, T. Sumida, H. Nakauchi, H. Miyoshi, and A. Shibuya. 2003. CD226 (DNAM-1) is involved in lymphocyte function-associated antigen 1 costimulatory signal for naive T cell differentiation and proliferation. J. Exp. Med. 198: 1829-1839. https://doi.org/10.1084/jem.20030958
  38. Ralston, K. J., S. L. Hird, X. Zhang, J. L. Scott, B. Jin, R. F. Thorne, M. C. Berndt, A. W. Boyd, and G. F. Burns. 2004. The LFA-1-associated molecule PTA-1 (CD226) on T cells forms a dynamic molecular complex with protein 4.1G and human discs large. J. Biol. Chem. 279: 33816-33828. https://doi.org/10.1074/jbc.M401040200
  39. Caraux, A., N. Kim, S. E. Bell, S. Zompi, T. Ranson, S. Lesjean-Pottier, M. E. Garcia-Ojeda, M. Turner, and F. Colucci. 2006. Phospholipase C-gamma2 is essential for NK cell cytotoxicity and innate immunity to malignant and virally infected cells. Blood 107: 994-1002.
  40. Ombrello, M. J., E. F. Remmers, G. Sun, A. F. Freeman, S. Datta, P. Torabi-Parizi, N. Subramanian, T. D. Bunney, R. W. Baxendale, M. S. Martins, N. Romberg, H. Komarow, I. Aksentijevich, H. S. Kim, J. Ho, G. Cruse, M. Y. Jung, A. M. Gilfillan, D. D. Metcalfe, C. Nelson, M. O'Brien, L. Wisch, K. Stone, D. C. Douek, C. Gandhi, A. A. Wanderer, H. Lee, S. F. Nelson, K. V. Shianna, E. T. Cirulli, D. B. Goldstein, E. O. Long, S. Moir, E. Meffre, S. M. Holland, D. L. Kastner, M. Katan, H. M. Hoffman, and J. D. Milner. 2012. Cold urticaria, immunodeficiency, and autoimmunity related to PLCG2 deletions. N. Engl. J. Med. 366: 330-338. https://doi.org/10.1056/NEJMoa1102140
  41. van Oers, N. S., B. Lowin-Kropf, D. Finlay, K. Connolly, and A. Weiss. 1996. alpha beta T cell development is abolished in mice lacking both Lck and Fyn protein tyrosine kinases. Immunity 5: 429-436. https://doi.org/10.1016/S1074-7613(00)80499-9
  42. Mason, L. H., J. Willette-Brown, L. S. Taylor, and D. W. McVicar. 2006. Regulation of Ly49D/DAP12 signal transduction by Src-family kinases and CD45. J. Immunol. 176: 6615-6623. https://doi.org/10.4049/jimmunol.176.11.6615
  43. Turner, M. and D. D. Billadeau. 2002. VAV proteins as signal integrators for multi-subunit immune-recognition receptors. Nat. Rev. Immunol. 2: 476-486. https://doi.org/10.1038/nri840
  44. Sylvain, N. R., K. Nguyen, and S. C. Bunnell. 2011. Vav1-mediated scaffolding interactions stabilize SLP-76 microclusters and contribute to antigen-dependent T cell responses. Sci. Signal. 4: ra14.
  45. Saveliev, A., L. Vanes, O. Ksionda, J. Rapley, S. J. Smerdon, K. Rittinger, and V. L. Tybulewicz. 2009. Function of the nucleotide exchange activity of vav1 in T cell development and activation. Sci. Signal. 2: ra83.
  46. Tybulewicz, V. L. 2005. Vav-family proteins in T-cell signalling. Curr. Opin. Immunol. 17: 267-274. https://doi.org/10.1016/j.coi.2005.04.003
  47. Chan, G., T. Hanke, and K. D. Fischer. 2001. Vav-1 regulates NK T cell development and NK cell cytotoxicity. Eur. J. Immunol. 31: 2403-2410. https://doi.org/10.1002/1521-4141(200108)31:8<2403::AID-IMMU2403>3.0.CO;2-O
  48. Colucci, F., E. Rosmaraki, S. Bregenholt, S. I. Samson, V. Di Bartolo, M. Turner, L. Vanes, V. Tybulewicz, and J. P. Di Santo. 2001. Functional dichotomy in natural killer cell signaling: Vav1-dependent and -independent mechanisms. J. Exp. Med. 193: 1413-1424. https://doi.org/10.1084/jem.193.12.1413
  49. Bryceson, Y. T., H. G. Ljunggren, and E. O. Long. 2009. Minimal requirement for induction of natural cytotoxicity and intersection of activation signals by inhibitory receptors. Blood 114: 2657-2666. https://doi.org/10.1182/blood-2009-01-201632
  50. Lanier, L. L., B. Corliss, and J. H. Phillips. 1997. Arousal and inhibition of human NK cells. Immunol. Rev. 155: 145-154. https://doi.org/10.1111/j.1600-065X.1997.tb00947.x
  51. Stebbins, C. C., C. Watzl, D. D. Billadeau, P. J. Leibson, D. N. Burshtyn, and E. O. Long. 2003. Vav1 dephosphorylation by the tyrosine phosphatase SHP-1 as a mechanism for inhibition of cellular cytotoxicity. Mol. Cell. Biol. 23: 6291-6299. https://doi.org/10.1128/MCB.23.17.6291-6299.2003
  52. Peterson, M. E. and E. O. Long. 2008. Inhibitory receptor signaling via tyrosine phosphorylation of the adaptor Crk. Immunity 29: 578-588. https://doi.org/10.1016/j.immuni.2008.07.014
  53. Kim, H. S. and E. O. Long. 2012. Complementary phosphorylation sites in the adaptor protein SLP-76 promote synergistic activation of natural killer cells. Sci. Signal. 5: ra49.
  54. Koretzky, G. A., F. Abtahian, and M. A. Silverman. 2006. SLP76 and SLP65: complex regulation of signalling in lymphocytes and beyond. Nat. Rev. Immunol. 6: 67-78. https://doi.org/10.1038/nri1750
  55. Balagopalan, L., N. P. Coussens, E. Sherman, L. E. Samelson, and C. L. Sommers. 2010. The LAT story: a tale of cooperativity, coordination, and choreography. Cold Spring Harb. Perspect. Biol. 2: a005512.
  56. Beach, D., R. Gonen, Y. Bogin, I. G. Reischl, and D. Yablonski. 2007. Dual role of SLP-76 in mediating T cell receptor- induced activation of phospholipase C-gamma1. J. Biol. Chem. 282: 2937-2946. https://doi.org/10.1074/jbc.M606697200
  57. Zhang, W., J. Sloan-Lancaster, J. Kitchen, R. P. Trible, and L. E. Samelson. 1998. LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell 92: 83-92. https://doi.org/10.1016/S0092-8674(00)80901-0
  58. Finco, T. S., T. Kadlecek, W. Zhang, L. E. Samelson, and A. Weiss. 1998. LAT is required for TCR-mediated activation of PLCgamma1 and the Ras pathway. Immunity 9: 617-626. https://doi.org/10.1016/S1074-7613(00)80659-7

Cited by

  1. Beware of NK cells in pre-clinical metastasis models vol.30, pp.7, 2013, https://doi.org/10.1007/s10585-013-9582-9
  2. De novo assembly and transcriptome characterization: novel insights into the natural resistance mechanisms of Microtus fortis against Schistosoma japonicum vol.15, pp.1, 2012, https://doi.org/10.1186/1471-2164-15-417
  3. Ras-related C3 Botulinum Toxin Substrate (Rac) and Src Family Kinases (SFK) Are Proximal and Essential for Phosphatidylinositol 3-Kinase (PI3K) Activation in Natural Killer (NK) Cell-mediated Direct C vol.291, pp.13, 2012, https://doi.org/10.1074/jbc.m115.681544
  4. Enhancing network activation in natural killer cells: predictions from in silico modeling vol.12, pp.5, 2020, https://doi.org/10.1093/intbio/zyaa008