DOI QR코드

DOI QR Code

Preclinical Efficacy and Mechanisms of Mesenchymal Stem Cells in Animal Models of Autoimmune Diseases

  • Received : 2014.01.05
  • Accepted : 2014.03.25
  • Published : 2014.04.30

Abstract

Mesenchymal stem cells (MSCs) are present in diverse tissues and organs, including bone marrow, umbilical cord, adipose tissue, and placenta. MSCs can expand easily in vitro and have regenerative stem cell properties and potent immunoregulatory activity. They inhibit the functions of dendritic cells, B cells, and T cells, but enhance those of regulatory T cells by producing immunoregulatory molecules such as transforming growth factor-${\beta}$, hepatic growth factors, prostaglandin $E_2$, interleukin-10, indolamine 2,3-dioxygenase, nitric oxide, heme oxygenase-1, and human leukocyte antigen-G. These properties make MSCs promising therapeutic candidates for the treatment of autoimmune diseases. Here, we review the preclinical studies of MSCs in animal models for systemic lupus erythematosus, rheumatoid arthritis, Crohn's disease, and experimental autoimmune encephalomyelitis, and summarize the underlying immunoregulatory mechanisms.

Keywords

References

  1. Watt, F. M. and B. L. Hogan. 2000. Out of Eden: stem cells and their niches. Science 287: 1427-1430. https://doi.org/10.1126/science.287.5457.1427
  2. Thomson, J. A., J. Itskovitz-Eldor, S. S. Shapiro, M. A. Waknitz, J. J. Swiergiel, V. S. Marshall, and J. M. Jones. 1998. Embryonic stem cell lines derived from human blastocysts. Science 282: 1145-1147. https://doi.org/10.1126/science.282.5391.1145
  3. Friedenstein, A. J., R. K. Chailakhjan, and K. S. Lalykina. 1970. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 3: 393-403.
  4. Nussbaum, J., E. Minami, M. A. Laflamme, J. A. Virag, C. B. Ware, A. Masino, V. Muskheli, L. Pabon, H. Reinecke, and C. E. Murry. 2007. Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB. J. 21: 1345-1357. https://doi.org/10.1096/fj.06-6769com
  5. Kon, E., A. Muraglia, A. Corsi, P. Bianco, M. Marcacci, I. Martin, A. Boyde, I. Ruspantini, P. Chistolini, M. Rocca, R. Giardino, R. Cancedda, and R. Quarto. 2000. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J. Biomed. Mater. Res. 49: 328-337. https://doi.org/10.1002/(SICI)1097-4636(20000305)49:3<328::AID-JBM5>3.0.CO;2-Q
  6. Solchaga, L. A., J. S. Temenoff, J. Gao, A. G. Mikos, A. I. Caplan, and V. M. Goldberg. 2005. Repair of osteochondral defects with hyaluronan- and polyester-based scaffolds. Osteoarthritis Cartilage 13: 297-309. https://doi.org/10.1016/j.joca.2004.12.016
  7. Horwitz, E. M., K. Le Blanc, M. Dominici, I. Mueller, I. Slaper-Cortenbach, F. C. Marini, R. J. Deans, D. S. Krause, A. Keating ; International Society for Cellular Therapy. 2005. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy 7: 393-395. https://doi.org/10.1080/14653240500319234
  8. Dominici, M., K. Le Blanc, I. Mueller, I. Slaper-Cortenbach, F. Marini, D. Krause, R. Deans, A. Keating, D. Prockop, and E. Horwitz. 2006. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8: 315-317. https://doi.org/10.1080/14653240600855905
  9. Amado, L. C., A. P. Saliaris, K. H. Schuleri, M. St John, J. S. Xie, S. Cattaneo, D. J. Durand, T. Fitton, J. Q. Kuang, G. Stewart, S. Lehrke, W. W. Baumgartner, B. J. Martin, A. W. Heldman, and J. M. Hare. 2005. Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc. Natl. Acad. Sci. USA 102: 11474-11479. https://doi.org/10.1073/pnas.0504388102
  10. Lin, Y. T., Y. Chern, C. K. Shen, H. L. Wen, Y. C. Chang, H. Li, T. H. Cheng, and H. M. Hsieh-Li. 2011. Human mesenchymal stem cells prolong survival and ameliorate motor deficit through trophic support in Huntington's disease mouse models. PLoS One 6: e22924. https://doi.org/10.1371/journal.pone.0022924
  11. Miyahara, Y., N. Nagaya, M. Kataoka, B. Yanagawa, K. Tanaka, H. Hao, K. Ishino, H. Ishida, T. Shimizu, K. Kangawa, S. Sano, T. Okano, S. Kitamura, and H. Mori. 2006. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat. Med. 12: 459-465. https://doi.org/10.1038/nm1391
  12. Ball, L. M., M. E. Bernardo, H. Roelofs, A. Lankester, A. Cometa, R. M. Egeler, F. Locatelli, and W. E. Fibbe. 2007. Cotransplantation of ex vivo expanded mesenchymal stem cells accelerates lymphocyte recovery and may reduce the risk of graft failure in haploidentical hematopoietic stem-cell transplantation. Blood 110: 2764-2767. https://doi.org/10.1182/blood-2007-04-087056
  13. Le Blanc, K., F. Frassoni, L. Ball, F. Locatelli, H. Roelofs, I. Lewis, E. Lanino, B. Sundberg, M. E. Bernardo, M. Remberger, G. Dini, R. M. Egeler, A. Bacigalupo, W. Fibbe, O. Ringden ; Developmental Committee of the European Group for Blood and Marrow Transplantation. 2008. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371: 1579-1586. https://doi.org/10.1016/S0140-6736(08)60690-X
  14. Duijvestein, M., A. C. Vos, H. Roelofs, M. E. Wildenberg, B. B. Wendrich, H. W. Verspaget, E. M. Kooy-Winkelaar, F. Koning, J. J. Zwaginga, H. H. Fidder, A. P. Verhaar, W. E. Fibbe, G. R. van den Brink, and D. W. Hommes. 2010. Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn's disease: results of a phase I study. Gut 59: 1662-1669. https://doi.org/10.1136/gut.2010.215152
  15. Ciccocioppo, R., M. E. Bernardo, A. Sgarella, R. Maccario, M. A. Avanzini, C. Ubezio, A. Minelli, C. Alvisi, A. Vanoli, F. Calliada, P. Dionigi, C. Perotti, F. Locatelli, and G. R. Corazza. 2011. Autologous bone marrow-derived mesenchymal stromal cells in the treatment of fistulising Crohn's disease. Gut 60: 788-798. https://doi.org/10.1136/gut.2010.214841
  16. Le Blanc, K., I. Rasmusson, B. Sundberg, C. Gotherstrom, M. Hassan, M. Uzunel, and O. Ringden. 2004. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363: 1439-1441. https://doi.org/10.1016/S0140-6736(04)16104-7
  17. Gu, Z., K. Akiyama, X. Ma, H. Zhang, X. Feng, G. Yao, Y. Hou, L. Lu, G. S. Gilkeson, R. M. Silver, X. Zeng, S. Shi, and L. Sun. 2010. Transplantation of umbilical cord mesenchymal stem cells alleviates lupus nephritis in MRL/lpr mice. Lupus 19: 1502-1514. https://doi.org/10.1177/0961203310373782
  18. Ji, S., Q. Guo, Y. Han, G. Tan, Y. Luo, and F. Zeng. 2012. Mesenchymal stem cell transplantation inhibits abnormal activation of Akt/GSK3beta signaling pathway in T cells from systemic lupus erythematosus mice. Cell Physiol. Biochem. 29: 705-712. https://doi.org/10.1159/000178590
  19. Zhou, K., H. Zhang, O. Jin, X. Feng, G. Yao, Y. Hou, and L. Sun. 2008. Transplantation of human bone marrow mesenchymal stem cell ameliorates the autoimmune pathogenesis in MRL/lpr mice. Cell Mol. Immunoly. 5: 417-424. https://doi.org/10.1038/cmi.2008.52
  20. Youd, M., C. Blickarz, L. Woodworth, T. Touzjian, A. Edling, J. Tedstone, M. Ruzek, R. Tubo, J. Kaplan, and T. Lodie. 2010. Allogeneic mesenchymal stem cells do not protect NZBxNZW F1 mice from developing lupus disease. Clin. Exp. Immunol. 161: 176-186.
  21. Schena, F., C. Gambini, A. Gregorio, M. Mosconi, D. Reverberi, M. Gattorno, S. Casazza, A. Uccelli, L. Moretta, A. Martini, and E. Traggiai. 2010. Interferon-gamma-dependent inhibition of B cell activation by bone marrow-derived mesenchymal stem cells in a murine model of systemic lupus erythematosus. Arthritis Rheum. 62: 2776-2786. https://doi.org/10.1002/art.27560
  22. Choi, E. W., I. S. Shin, S. Y. Park, J. H. Park, J. S. Kim, E. J. Yoon, S. K. Kang, J. C. Ra, and S. H. Hong. 2012. Reversal of serologic, immunologic, and histologic dysfunction in mice with systemic lupus erythematosus by long-term serial adipose tissue-derived mesenchymal stem cell transplantation. Arthritis Rheum. 64: 243-253. https://doi.org/10.1002/art.33313
  23. Firestein, G. S. 2003. Evolving concepts of rheumatoid arthritis. Nature 423: 356-361. https://doi.org/10.1038/nature01661
  24. Liu, Y., R. Mu, S. Wang, L. Long, X. Liu, R. Li, J. Sun, J. Guo, X. Zhang, J. Guo, P. Yu, C. Li, X. Liu, Z. Huang, D. Wang, H. Li, Z. Gu, B. Liu, and Z. Li. 2010. Therapeutic potential of human umbilical cord mesenchymal stem cells in the treatment of rheumatoid arthritis. Arthritis Res. Ther. 12: R210. https://doi.org/10.1186/ar3187
  25. Zhou, B., J. Yuan, Y. Zhou, M. Ghawji, Jr., Y. P. Deng, A. J. Lee, A. J. Lee, U. Nair, A. H. Kang, D. D. Brand, and T. J. Yoo. 2011. Administering human adipose-derived mesenchymal stem cells to prevent and treat experimental arthritis. Clin. Immunol. 141: 328-337. https://doi.org/10.1016/j.clim.2011.08.014
  26. Augello, A., R. Tasso, S. M. Negrini, R. Cancedda, and G. Pennesi. 2007. Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen- induced arthritis. Arthritis Rheum. 56: 1175-1186. https://doi.org/10.1002/art.22511
  27. Papadopoulou, A., M. Yiangou, E. Athanasiou, N. Zogas, P. Kaloyannidis, I. Batsis, A. Fassas, A. Anagnostopoulos, and E. Yannaki. 2012. Mesenchymal stem cells are conditionally therapeutic in preclinical models of rheumatoid arthritis. Ann. Rheum. Dis. 71: 1733-1740. https://doi.org/10.1136/annrheumdis-2011-200985
  28. Gonzalez, M. A., E. Gonzalez-Rey, L. Rico, D. Buscher, and M. Delgado. 2009. Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses. Gastroenterology 136: 978-989. https://doi.org/10.1053/j.gastro.2008.11.041
  29. Bouma, G. and W. Strober. 2003. The immunological and genetic basis of inflammatory bowel disease. Nat. Rev. Immunol. 3: 521-533. https://doi.org/10.1038/nri1132
  30. Akiyama, K., C. Chen, D. Wang, X. Xu, C. Qu, T. Yamaza, T. Cai, W. Chen, L. Sun, and S. Shi. 2012. Mesenchymalstem- cell-induced immunoregulation involves FAS-ligand-/ FAS-mediated T cell apoptosis. Cell Stem Cell 10: 544-555. https://doi.org/10.1016/j.stem.2012.03.007
  31. Zappia, E., S. Casazza, E. Pedemonte, F. Benvenuto, I. Bonanni, E. Gerdoni, D. Giunti, A. Ceravolo, F. Cazzanti, F. Frassoni, G. Mancardi, and A. Uccelli. 2005. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 106: 1755-1761. https://doi.org/10.1182/blood-2005-04-1496
  32. Gerdoni, E., B. Gallo, S. Casazza, S. Musio, I. Bonanni, E. Pedemonte, R. Mantegazza, F. Frassoni, G. Mancardi, R. Pedotti, and A. Uccelli. 2007. Mesenchymal stem cells effectively modulate pathogenic immune response in experimental autoimmune encephalomyelitis. Ann. Neurol. 61: 219-227. https://doi.org/10.1002/ana.21076
  33. Nauta, A. J., A. B. Kruisselbrink, E. Lurvink, R. Willemze, and W. E. Fibbe. 2006. Mesenchymal stem cells inhibit generation and function of both $CD34^{+}$-derived and monocyte- derived dendritic cells. J. Immunol. 177: 2080-2087. https://doi.org/10.4049/jimmunol.177.4.2080
  34. Jiang, X. X., Y. Zhang, B. Liu, S. X. Zhang, Y. Wu, X. D. Yu, and N. Mao. 2005. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 105: 4120-4126. https://doi.org/10.1182/blood-2004-02-0586
  35. Aggarwal, S. and M. F. Pittenger. 2005. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105: 1815-1822. https://doi.org/10.1182/blood-2004-04-1559
  36. Beyth, S., Z. Borovsky, D. Mevorach, M. Liebergall, Z. Gazit, H. Aslan, E. Galun, and J. Rachmilewitz. 2005. Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood 105: 2214-2219. https://doi.org/10.1182/blood-2004-07-2921
  37. Maccario, R., M. Podesta, A. Moretta, A. Cometa, P. Comoli, D. Montagna, L. Daudt, A. Ibatici, G. Piaggio, S. Pozzi, F. Frassoni, and F. Locatelli. 2005. Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of $CD4^{+}$ T-cell subsets expressing a regulatory/suppressive phenotype. Haematologica 90: 516-525.
  38. Zhang, W., W. Ge, C. Li, S. You, L. Liao, Q. Han, W. Deng, and R. C. Zhao. 2004. Effects of mesenchymal stem cells on differentiation, maturation, and function of human monocyte- derived dendritic cells. Stem Cells Dev. 13: 263-271. https://doi.org/10.1089/154732804323099190
  39. Chiesa, S., S. Morbelli, S. Morando, M. Massollo, C. Marini, A. Bertoni, F. Frassoni, S. T. Bartolome, G. Sambuceti, E. Traggiai, and A. Uccelli. 2011. Mesenchymal stem cells impair in vivo T-cell priming by dendritic cells. Proc. Natl. Acad. Sci. USA 108: 17384-17389. https://doi.org/10.1073/pnas.1103650108
  40. Spaggiari, G. M., H. Abdelrazik, F. Becchetti, and L. Moretta. 2009. MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2. Blood 113: 6576-6583. https://doi.org/10.1182/blood-2009-02-203943
  41. Wehner, R., D. Wehrum, M. Bornhauser, S. Zhao, K. Schakel, M. P. Bachmann, U. Platzbecker, G. Ehninger, E. P. Rieber, and M. Schmitz. 2009. Mesenchymal stem cells efficiently inhibit the proinflammatory properties of 6-sulfo LacNAc dendritic cells. Haematologica 94: 1151-1156. https://doi.org/10.3324/haematol.2008.001735
  42. Bartholomew, A., C. Sturgeon, M. Siatskas, K. Ferrer, K. McIntosh, S. Patil, W. Hardy, S. Devine, D. Ucker, R. Deans, A. Moseley, and R. Hoffman. 2002. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp. Hematol. 30: 42-48. https://doi.org/10.1016/S0301-472X(01)00769-X
  43. Krampera, M., S. Glennie, J. Dyson, D. Scott, R. Laylor, E. Simpson, and F. Dazzi. 2003. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen- specific T cells to their cognate peptide. Blood 101: 3722-3729. https://doi.org/10.1182/blood-2002-07-2104
  44. Maitra, B., E. Szekely, K. Gjini, M. J. Laughlin, J. Dennis, S. E. Haynesworth, and O. N. Koc. 2004. Human mesenchymal stem cells support unrelated donor hematopoietic stem cells and suppress T-cell activation. Bone Marrow Transplant. 33: 597-604. https://doi.org/10.1038/sj.bmt.1704400
  45. Gonzalez-Rey, E., M. A. Gonzalez, N. Varela, F. O'Valle, P. Hernandez-Cortes, L. Rico, D. Buscher, and M. Delgado. 2010. Human adipose-derived mesenchymal stem cells reduce inflammatory and T cell responses and induce regulatory T cells in vitro in rheumatoid arthritis. Ann. Rheum. Dis. 69: 241-248. https://doi.org/10.1136/ard.2008.101881
  46. Locatelli, F., R. Maccario, and F. Frassoni. 2007. Mesenchymal stromal cells, from indifferent spectators to principal actors. Are we going to witness a revolution in the scenario of allograft and immune-mediated disorders? Haematologica 92: 872-877. https://doi.org/10.3324/haematol.11479
  47. Krampera, M., L. Cosmi, R. Angeli, A. Pasini, F. Liotta, A. Andreini, V. Santarlasci, B. Mazzinghi, G. Pizzolo, F. Vinante, P. Romagnani, E. Maggi, S. Romagnani, and F. Annunziato. 2006. Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells 24: 386-398. https://doi.org/10.1634/stemcells.2005-0008
  48. Mougiakakos, D., R. Jitschin, C. C. Johansson, R. Okita, R. Kiessling, and K. Le Blanc. 2011. The impact of inflammatory licensing on heme oxygenase-1-mediated induction of regulatory T cells by human mesenchymal stem cells. Blood 117: 4826-4835. https://doi.org/10.1182/blood-2010-12-324038
  49. Ren, G., X. Zhao, L. Zhang, J. Zhang, A. L'Huillier, W. Ling, A. I. Roberts, A. D. Le, S. Shi, C. Shao, and Y. Shi. 2010. Inflammatory cytokine-induced intercellular adhesion molecule- 1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression. J. Immunol. 184: 2321-2328. https://doi.org/10.4049/jimmunol.0902023
  50. Corcione, A., F. Benvenuto, E. Ferretti, D. Giunti, V. Cappiello, F. Cazzanti, M. Risso, F. Gualandi, G. L. Mancardi, V. Pistoia, and A. Uccelli. 2006. Human mesenchymal stem cells modulate B-cell functions. Blood 107: 367-372. https://doi.org/10.1182/blood-2005-07-2657
  51. Tabera, S., J. A. Perez-Simon, M. Diez-Campelo, L. I. Sanchez- Abarca, B. Blanco, A. Lopez, A. Benito, E. Ocio, F. M. Sanchez-Guijo, C. Canizo, and J. F. San Miguel. 2008. The effect of mesenchymal stem cells on the viability, proliferation and differentiation of B-lymphocytes. Haematologica 93: 1301-1309. https://doi.org/10.3324/haematol.12857

Cited by

  1. Improved Protective Effect of Umbilical Cord Stem Cell Transplantation on Cisplatin-Induced Kidney Injury in Mice Pretreated with Antithymocyte Globulin vol.2016, pp.None, 2016, https://doi.org/10.1155/2016/3585362
  2. Intramyocardial implantation of differentiated rat bone marrow mesenchymal stem cells enhanced by TGF-β1 improves cardiac function in heart failure rats vol.49, pp.6, 2014, https://doi.org/10.1590/1414-431x20165273
  3. NCAM affects directional lamellipodia formation of BMSCs via β1 integrin signal-mediated cofilin activity vol.435, pp.1, 2014, https://doi.org/10.1007/s11010-017-3066-1
  4. (Mesenchymal) Stem Cell-Based Therapy in Cisplatin-Induced Acute Kidney Injury Animal Model: Risk of Immunogenicity and Tumorigenicity vol.2017, pp.None, 2014, https://doi.org/10.1155/2017/7304643
  5. The Beneficial Effect of Human Amnion Mesenchymal Cells in Inhibition of Inflammation and Induction of Neuronal Repair in EAE Mice vol.2018, pp.None, 2018, https://doi.org/10.1155/2018/5083797
  6. Comparative evaluation of mesenchymal stromal cells from umbilical cord and amniotic membrane in xeno-free conditions vol.19, pp.None, 2018, https://doi.org/10.1186/s12860-018-0178-8
  7. INFLUENCE OF NATIVE AND CRYOPRESERVED PLACENTAL DERIVATIVES ON THE SPLENOCYTE FUNCTIONAL CHARACTERISTICS IN VITRO vol.2018, pp.2, 2014, https://doi.org/10.29254/2077-4214-2018-2-144-221-224
  8. Neuroinflammation and Scarring After Spinal Cord Injury: Therapeutic Roles of MSCs on Inflammation and Glial Scar vol.12, pp.None, 2021, https://doi.org/10.3389/fimmu.2021.751021