• Title/Summary/Keyword: image denoising

Search Result 212, Processing Time 0.027 seconds

Image Be-noising Using Lifting Scheme (Lifting Scheme을 이용한 이미지 잡음 제거)

  • Park, Young-Seok;Kwak, Hoon-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1731-1734
    • /
    • 2003
  • In this paper, we describe an approach for image denoising using the lifting construction, with the spatial adaptive wavelet transform. The adaptive lifting scheme is implemented in spatial domain to be adjusted thresholds to reduce noise. In this approach we represent adaptive characteristics of biorthogonal wavelets for choosing predictors effectively. Predict filter is changed from sample to sample according to local signal features with their vanishing moments. We in this approach have implemented and applied to image denoising by finding a relevant minimax threshold. Experimental results show that the adaptive method of denoising process is compared with existing ones, such as non-adaptive wavelet, CRF(13, 7) and SWE(13, 7) wavelets used by JPEG2000.

  • PDF

Shift-Invariant uHMT Estimation for Wavelet-based Image Denoising (웨이블렛 기반 영상 잡음제거를 위한 천이 불변 uHMT 추정)

  • 윤근수;정원용
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.221-224
    • /
    • 2001
  • In this paper we propose a shift-invariant uHMT estimation for wavelet-based image denoising. The proposed estimation have just nine meta-parameter (independent of the size of the image and the number of wavelet scales) and requires no kinds of training. Also it solve visual artifacts resulted in the lack of shift-invariance in the DWT. The experimental results show that the proposed estimation is more effective than the other wavelet-based denoising by 0.5-ldB (PSNR) and allows an Ο(nlog n) in terms of performance speed.

  • PDF

SATURATION-VALUE TOTAL VARIATION BASED COLOR IMAGE DENOISING UNDER MIXED MULTIPLICATIVE AND GAUSSIAN NOISE

  • JUNG, MIYOUN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.26 no.3
    • /
    • pp.156-184
    • /
    • 2022
  • In this article, we propose a novel variational model for restoring color images corrupted by mixed multiplicative Gamma noise and additive Gaussian noise. The model involves a data-fidelity term that characterizes the mixed noise as an infimal convolution of two noise distributions and the saturation-value total variation (SVTV) regularization. The data-fidelity term facilitates suitable separation of the multiplicative Gamma and Gaussian noise components, promoting simultaneous elimination of the mixed noise. Furthermore, the SVTV regularization enables adequate denoising of homogeneous regions, while maintaining edges and details and diminishing the color artifacts induced by noise. To solve the proposed nonconvex model, we exploit an alternating minimization approach, and then the alternating direction method of multipliers is adopted for solving subproblems. This contributes to an efficient iterative algorithm. The experimental results demonstrate the superior performance of the proposed model compared to other existing or related models, with regard to visual inspection and image quality measurements.

POCS Based Interpolation Method for Irregularly Sampled Image (불규칙한 샘플 영상에 대한 POCS 기반 보간법)

  • Lee, Jong-Hwa;Lee, Chul-Hee
    • Journal of Broadcast Engineering
    • /
    • v.16 no.4
    • /
    • pp.669-679
    • /
    • 2011
  • In this paper, we propose a POCS based irregularly sampled image interpolation method exploiting non-local block-based wavelet shrinkage denoising algorithm. The method provides convex sets to improve the performance. The Delaunay triangulation interpolation is first applied to interpolate the missing pixels of the irregularly sampled image into the regular grids. Then, the non-local block-based wavelet shrinkage denoising algorithm is applied, and the originally observed pixels are enforced. After iteration is performed, the denoising algorithm for non-edge areas is applied to acquire the final result. The experimental results show that the proposed method outperforms the conventional methods.

Noise Reduction Using Gaussian Mixture Model and Morphological Filter (가우스 혼합모델과 형태학적 필터를 이용한 잡음 제거)

  • Eom Il-Kyu;Kim Yoo-Shin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.1
    • /
    • pp.29-36
    • /
    • 2004
  • Generally, wavelet coefficients can be classified into two categories: large coefficients with much signal information and small coefficients with little signal component. This statistical characteristic of wavelet coefficient is approximated to Gaussian mixture model and efficiently applied to noise reduction. In this paper, we propose an image denoising method using mixture modeling of wavelet coefficients. Binary mask value is generated by proper threshold which classifies wavelet coefficients into two categories. Information of binary mask value is used to remove image noise. We also develope an enhancement method of mask value using morphological filter, and apply it to image denoising for improvement of the proposed method. Simulation results shows the proposed method have better PSNRs than those of the state of art denoising methods.

Evaluation of Denoising Filters Based on Edge Locations

  • Seo, Suyoung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.4
    • /
    • pp.503-513
    • /
    • 2020
  • This paper presents a method to evaluate denoising filters based on edge locations in their denoised images. Image quality assessment has often been performed by using structural similarity (SSIM). However, SSIM does not provide clearly the geometric accuracy of features in denoised images. Thus, in this paper, a method to localize edge locations with subpixel accuracy based on adaptive weighting of gradients is used for obtaining the subpixel locations of edges in ground truth image, noisy images, and denoised images. Then, this paper proposes a method to evaluate the geometric accuracy of edge locations based on root mean squares error (RMSE) and jaggedness with reference to ground truth locations. Jaggedness is a measure proposed in this study to measure the stability of the distribution of edge locations. Tested denoising filters are anisotropic diffusion (AF), bilateral filter, guided filter, weighted guided filter, weighted mean of patches filter, and smoothing filter (SF). SF is a simple filter that smooths images by applying a Gaussian blurring to a noisy image. Experiments were performed with a set of simulated images and natural images. The experimental results show that AF and SF recovered edge locations more accurately than the other tested filters in terms of SSIM, RMSE, and jaggedness and that SF produced better results than AF in terms of jaggedness.

Multiple Decision Model for Image Denoising in Wavelet Transform Domain (웨이블릿 변환 영역에서 영상 잡음 제거를 위한 다중 결정 모델)

  • 엄일규;김유신
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.7C
    • /
    • pp.937-945
    • /
    • 2004
  • A binary decision model which is used to denoising has demerits to measure the precise ratio of signal to noise because of only a binary classification. To supplement these demerits, complex statistical model and undecimated wavelet transform are generally exploited. In this paper, we propose a noise reduction method using a multi-level decision model for measuring the ratio of noise in noisy image. The propose method achieves good denoising performance with orthogonal wavelet transform because the ratio of signal to noise can be calculated to multi-valued form. In simulation results, the proposed denoising method outperforms 0.1dB in the PSNR sense than the state of art denoising algorithms using orthogonal wavelet transform.

Development of de-noised image reconstruction technique using Convolutional AutoEncoder for fast monitoring of fuel assemblies

  • Choi, Se Hwan;Choi, Hyun Joon;Min, Chul Hee;Chung, Young Hyun;Ahn, Jae Joon
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.888-893
    • /
    • 2021
  • The International Atomic Energy Agency has developed a tomographic imaging system for accomplishing the total fuel rod-by-rod verification time of fuel assemblies within the order of 1-2 h, however, there are still limitations for some fuel types. The aim of this study is to develop a deep learning-based denoising process resulting in increasing the tomographic image acquisition speed of fuel assembly compared to the conventional techniques. Convolutional AutoEncoder (CAE) was employed for denoising the low-quality images reconstructed by filtered back-projection (FBP) algorithm. The image data set was constructed by the Monte Carlo method with the FBP and ground truth (GT) images for 511 patterns of missing fuel rods. The de-noising performance of the CAE model was evaluated by comparing the pixel-by-pixel subtracted images between the GT and FBP images and the GT and CAE images; the average differences of the pixel values for the sample image 1, 2, and 3 were 7.7%, 28.0% and 44.7% for the FBP images, and 0.5%, 1.4% and 1.9% for the predicted image, respectively. Even for the FBP images not discriminable the source patterns, the CAE model could successfully estimate the patterns similarly with the GT image.

An Index-Building Method for Boundary Matching that Supports Arbitrary Partial Denoising (임의의 부분 노이즈제거를 지원하는 윤곽선 매칭의 색인 구축 방법)

  • Kim, Bum-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.11
    • /
    • pp.1343-1350
    • /
    • 2019
  • Converting boundary images to time-series makes it feasible to perform boundary matching even on a very large image database, which is very important for interactive and fast matching. In recent research, there has been an attempt to perform fast matching considering partial denoising by converting the boundary image into time series. In this paper, to improve performance, we propose an index-building method considering all possible arbitrary denoising parameters for removing arbitrary partial noises. This is a challenging problem since the partial denoising boundary matching must be considered for all possible denoising parameters. We propose an efficient single index-building algorithm by constructing a minimum bounding rectangle(MBR) according to all possible denoising parameters. The results of extensive experiments conducted show that our index-based matching method improves the search performance up to 46.6 ~ 4023.6 times.

Adaptive High-order Variation De-noising Method for Edge Detection with Wavelet Coefficients

  • Chenghua Liu;Anhong Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.412-434
    • /
    • 2023
  • This study discusses the high-order diffusion method in the wavelet domain. It aims to improve the edge protection capability of the high-order diffusion method using wavelet coefficients that can reflect image information. During the first step of the proposed diffusion method, the wavelet packet decomposition is a more refined decomposition method that can extract the texture and structure information of the image at different resolution levels. The high-frequency wavelet coefficients are then used to construct the edge detection function. Subsequently, because accurate wavelet coefficients can more accurately reflect the edges and details of the image information, by introducing the idea of state weight, a scheme for recovering wavelet coefficients is proposed. Finally, the edge detection function is constructed by the module of the wavelet coefficients to guide high-order diffusion, the denoised image is obtained. The experimental results showed that the method presented in this study improves the denoising ability of the high-order diffusion model, and the edge protection index (SSIM) outperforms the main methods, including the block matching and 3D collaborative filtering (BM3D) and the deep learning-based image processing methods. For images with rich textural details, the present method improves the clarity of the obtained images and the completeness of the edges, demonstrating its advantages in denoising and edge protection.