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a b s t r a c t

The International Atomic Energy Agency has developed a tomographic imaging system for accomplishing
the total fuel rod-by-rod verification time of fuel assemblies within the order of 1e2 h, however, there
are still limitations for some fuel types. The aim of this study is to develop a deep learning-based de-
noising process resulting in increasing the tomographic image acquisition speed of fuel assembly
compared to the conventional techniques. Convolutional AutoEncoder (CAE) was employed for de-
noising the low-quality images reconstructed by filtered back-projection (FBP) algorithm. The image
data set was constructed by the Monte Carlo method with the FBP and ground truth (GT) images for 511
patterns of missing fuel rods. The de-noising performance of the CAE model was evaluated by comparing
the pixel-by-pixel subtracted images between the GT and FBP images and the GT and CAE images; the
average differences of the pixel values for the sample image 1, 2, and 3 were 7.7%, 28.0% and 44.7% for the
FBP images, and 0.5%, 1.4% and 1.9% for the predicted image, respectively. Even for the FBP images not
discriminable the source patterns, the CAE model could successfully estimate the patterns similarly with
the GT image.
© 2020 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Single-photon emission tomography (SPECT) technique is a
nuclear medicine tomographic imaging technique generally used in
the clinic to obtain three-dimensional (3-D) information of a
gamma-emitting radioisotope distribution in the patient. This
technique has been applied to various industrial research fields for
the purpose of non-destructive analysis (NDA) for environmental
monitoring or safeguards.

The International Atomic Energy Agency (IAEA) has always paid
due attention to the development of safeguards techniques for
irradiated-fuel storage and has monitored the amount of nuclear
materials of each country for managing and supervising peaceful
nuclear activities [1]. For the quantitative verification of the amount
of nuclear material presented in the State’s accounts, over a hun-
dred different types of NDA equipment have been developed for
many years [2]; however, they still have limitations in detecting
whether a fraction of a declared amount of nuclear material is
missing owing to its high detection uncertainty and volume
by Elsevier Korea LLC. This is an
averaging assessment. Therefore, SPECT technique has considered
as one of the most attractive techniques for safeguards of a spent
fuel assembly owing to its capability of intuitive distinction of
missing fuel pellets or fuel rods. The IAEA has developed SPECT
imaging system from 2004 and various types of imaging systems
have been proposed [3e6]. The IAEA aims to reduce the total
verification time of unirradiated fuel assemblies within the order of
1e2 h; however, it could be up to 10 h for some fuel types by using
the most recently developed SPECT system [6].

Unlike a human body, the spent fuel assembly is composed of
high Z materials; therefore which results in degrading the projec-
tion image quality because of the high probability of attenuation
and scatter of gamma rays by high Z materials. Furthermore, the
image quality depends on the collimator geometry of the SPECT
system. One of the methods for reducing verification time is to
develop an image quality improvement technique because there is
a tradeoff between image acquisition speed and image quality.

Filtered back-projection (FBP) algorithm is the most simple and
fast image reconstruction algorithm applying a convolution filter to
remove blurring; however, image reconstruction performance of
this algorithm is sensitive to source quality or gamma detection
performance. Compared with FBP, iterative reconstruction
open access article under the CC BY-NC-ND license (http://creativecommons.org/
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algorithm can improve image quality through a procedure itera-
tively comparing between images assumed by a statistical model
and real-time measured values; however, it needs a lot of compu-
tational costs and an optimization process of the number of itera-
tion and analytical model. Recently, deep learning (DL)-based
image processing has been actively investigated and proved to
outperform other techniques in improving image quality. This
technique enables to obtain de-noised images within a very short
time from low-quality images by training a DL algorithm about
complex relationships between the high-quality images and low-
quality images. Many researchers have shown its remarkable per-
formance in the de-noising research area by using various DL
models.

AutoEncoders are a type of generative model used for unsu-
pervised learning and a Simple AutoEncoder (SAE) is an easily
useable model showing high performance in removing blurring on
an image [7]. A Convolutional AutoEncoder (CAE) was recently
introduced that converted the hidden layer of SAE from neural
networks to convolution layer. The CAE model shows the better
performance in de-noising compared with SAE model [8], because
the convolution layer has better image recognition than neural
networks. Several studies using the CAE model for thermal images
[9] and medical imaging analysis [10] also showed great perfor-
mance of the CAE model.

The aim of this study is to develop a CAEmodel-based de-noised
image reconstruction technique resulting in increasing the tomo-
graphic image acquisition speed of fuel assembly compared to the
conventional techniques to reduce the total verification time. In this
study, we trained a CAE model for various patterns of fuel rods in a
3 � 3 array assembly structure and evaluated the de-noising per-
formance for various quality of FBP images.

2. Materials and methods

2.1. Tomographic image acquisition of fuel assembly

In our previous study, we designed a dual-head SPECT system
using Monte Carlo (MC) method in GATE (v. 8.1) [11]. The de-
tector head of the SPECT system is composed of 0.3 � 4 � 4 (front
side) and 0.3 (back side) cm3 trapezoidal BGO scintillators and
0.2 � 5 � 4 cm3 slits surrounded by tungsten materials in front of
each scintillator; located in every 0.4 cm intervals. Field-of-view
of the detector was 25.6 � 4 cm2 and the surface of the detector
was 22 cm apart from the center of a fuel assembly, which
consists of 3 � 3 fuel rod array where the diameter of fuel rod
locating in every 1.269 cm intervals is 0.994 cm. Fuel source was
assumed as a spent fuel burned up of 10327 MWd/MTU and
cooled for 5 years; the major radionuclide of the spent fuel is Cs-
137 because of its long half-life (about 30 years). In the 3 � 3
array of the fuel assembly, total of 511 patterns of missing fuel
rods are possible and the 128 � 128 tomographic images for
these patterns were reconstructed by FBP algorithm using 400
projection data acquired during 360� rotation. For obtaining
projection data for 64 channels of the detector head, the total
detection count for a 400e700 keV energy window in an energy
spectrum deposited in the BGO scintillator of each channel was
used for data processing.

2.2. Ground truth image generation

A ground truth (GT) image shows the actual pattern of fuel rods
in the assembly regarding the low-quality FBP image. The GT
images for 511 patterns were generated based on geometrical
information of the fuel assembly. The fuel rod consists of UO2
(10.519 g/cm3), ZIRLO (6.578 g/cm3) and He gas (2.222 mg/cm3).
Averaged electron density for these materials relative to that of
water was assigned in each pixel of 128 � 128 virtual grid based
on detailed geometrical information of fuel rod and assembly. This
GT image generated based on the electron density of eachmaterial
can be used for the attenuation and scatter correction on the
reconstructed image. Source activity distribution of fuel assembly
set in GATE simulation can be assigned on the GT image. The GT
image and FBP image sets were used for training the deep
learning-based image reconstruction algorithm using CAE.

2.3. Convolutional AutoEncoder-based de-noising technique

Convolution neural networks (CNN) consists of convolution,
activation function, and pooling layer as a method of image
recognition [12,13]. The convolution layer splits the input image
into small subsets and extracts multiple features using a filter from
the input image [13]; this is similar to the process by which people
perceive things. In general, the activation function uses a non-linear
function to express hidden relationships. Fig. 1 shows the compu-
tational process of CNN. In the convolution layer, the convolved
map are extracted by using a filter where the size of 3 � 3. After
then, Relu function, the activation function, is applied to the
convolved map and a feature map is generated. The Relu function
helps for the gradient vanishing problem and makes the training
speed to increase [14]. In the max-pooling layer, the feature map is
scanned by a 2 � 2 max-pooling filter with a similar procedure
illustrated in Fig. 1. After then, the biggest pixel value of the feature
map is extracted on the overlapped region between the feature
map and themax-pooling filter. Based on this procedure, the size of
the image is reduced by half.

Fig. 2 shows a schematic diagram of the CAE model. The CAE
model is a combination model of the CNN model and AutoEncoder
[15,16]. The AutoEncoder consists of an encoder and a decoder. The
encoder extracts characteristics of the input image by reducing the
dimension of the image, and then the decoder reconstructs the
transformed image with increasing the dimension based on fea-
tures extracted from the encoder [16]. In the CAE model, the
encoder is composed of two convolution layers where the filter size
is 3 � 3 and twomax-pooling layers where the pooling size is 2� 2,
and these layers are positioned alternatively. The first convolution
layer extracts multiple features using 32 filters and the size of the
input image is reduced by half in the first max-pooling layer. The
second convolution layer also extracts features using 64 filters and
the second max-pooling layer reduces the size of the image by half
again and generates 64 feature maps where the size of 32 � 32. The
decoder is composed of the same convolution layers in the opposite
structure to the encoder and two up-sampling layers where the up-
sampling size is 2 � 2. The first convolution layer in the decoder
takes the 64 feature maps generated in encoder using 64 filters and
the map dimension is increased by twice in the first up-sampling
layer. The second convolution layer having 32 filters and up-
sampling layer perform the same procedure and generates 32
feature maps where the size of 128 � 128. Like the CNN, the Relu
functionwas applied as the activation function to both encoder and
decoder. Finally, the output image was obtained by applying the
convolution layer having one filter to the feature maps extracted
from the decoder. In this final procedure, the activation function of
the convolution layer was set to a sigmoid function, where the
minimum and maximum values are 0 and 1, respectively, to esti-
mate the probability of the pixel.

A loss function that is able to evaluate the difference between
the output image generated through the CAE model and the GT
image was set to mean squared error (MSE). MSE is one of the most
generally used loss functions for evaluating the accuracy of the DL
model. The CAE model was optimized by minimizing the pixel-by-



Fig. 1. Feature map generating process of convolution neural networks.

Fig. 2. Schematic diagram of the structure of the Convolutional AutoEncoder.
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pixel difference using Eq (1), where GTnhv and CAEnhv are pixel
values of GT and CAE images, respectively, regarding nth pattern of
missing fuel rods, hth position on the x-axis of the image, and vth
position on the y-axis of the image. The optimization method was
set to Adam having an efficient order of computation and stable
optimization in image recognition.
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ðGTnhv � CAEnhvÞ2 (1)
2.4. De-noising performance evaluation of the CAE model for
various qualities of tomographic images

Among 511 GT-FBP image sets, 501 image sets were used for
training the CAE model and the rest of the image sets were used
for evaluating the de-noising performance of the CAE model. To
quantitatively evaluate the de-noising performance, the average
difference of pixel values in a specific region of interest for the 3 �
3 array of the fuel assembly was calculated between GT and FBP
images and GT and CAE images. The source activity of the single
fuel rod was set to 1.5 MBq, and we obtained four different quality
of FBP images for 511 patterns of missing fuel rods by scanning the
assembly for different times: 0.6, 10, 20, and 60 min. The
performance of the CAE model was evaluated four times sepa-
rately using four different quality of 511 GT-FBP image sets.

3. Results and discussion

3.1. Loss function

For training the CAEmodel, batch size, iteration, and epochwere
set to 1, 501, and 100, respectively. These optimized hyper-
parameters were obtained by iteratively changing conditions and
comparing image quality and computation performance. As the
training of the CAE model proceeds, the MSE between the GT and
CAE images decreases as illustrated in Fig. 3. When the epoch was
16 times, the MSE became almost zero and which was stably
maintained until the end of the training; which means that the CAE
model was successfully trained to estimate well the GT image from
the FBP image. Meanwhile, as the number of epoch increasing, the
computation cost also increases. Therefore, based on the analysis of
this loss function, we could optimally determine the number of
epoch for training well the CAE model.

3.2. De-noising performance of the Convolutional AutoEncoder

Fig. 4 illustrates the comparison of the GT, FBP, and CAE images
for three sample patterns of missing fuel rods. Fig. 5 shows the



Fig. 3. Loss function curve showing the change of the mean squared error for the
number of epoch.
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comparison of the pixel-by-pixel subtracted images between the
GT and FBP images and the GT and CAE images. As the results of
the evaluation, the average differences of the pixel values of the
region of interest (yellow box in Fig. 4) in the subtracted images
for the sample 1, 2, and 3 were 7.7%, 28.0% and 44.7% for the FBP
images, and 0.5%, 1.4% and 1.9% for the predicted image, respec-
tively. The FBP images obtained by the dual-head SPECT system
could successfully estimate the patterns of missing fuel rods
because the image acquisition was performed in relatively ideal
condition in GATE; the probabilities of the attenuation and scatter
by the structure of the fuel assembly were small enough because
of the small array size; the time for data acquisition was long
enough (60 min); variations in the gamma detection efficiencies
for the 64 channels of the detector were almost zero. However, the
Fig. 4. Comparison of the GT, FBP, and CAE images
FBP images were quite blurry caused by the inherent spatial res-
olution of the detector. Furthermore, we could find ring artifacts
on the FBP image caused by the limited number of projection
images acquired during 360� rotation. On the other hand, the CAE
images showed the de-noised high-quality images almost similar
to the GT images, which enables the rod-by-rod discrimination.
We expect that this CAE model is able to detect the small variation
in the assembly through further research with more extensive big
data constructed using more various source activity distribution
and with the more detailed feature extraction techniques in the
CAE model.
3.3. Application of the Convolutional AutoEncoder to the various
FBP image qualities

Fig. 6 illustrates the comparison of the de-noising performance
of the CAE model for four different FBP image qualities. As
decreasing the time for scanning the assembly, the noise level in-
creases, and the FBP images obtained by scanning for 0.6 min were
not able to discriminate the pattern of missing fuel rods. However,
even though some noises were revealed on the CAE images for the
bad quality of the FBP image, the CAE models separately trained for
four qualities of the FBP images could successfully estimate two
patterns of missing fuel rods almost similarly with the GT images.
When all the four kinds of 511 GT-FBP image sets were used for
training the CAE model, it could successfully estimate the patterns
for all image qualities, as well. In these results, we could see the
possibility of reducing the image acquisition time about 10 times,
and expect to be able to optimize the CAE model by determining a
minimum estimable image quality in further research.
for three sample patterns of missing fuel rods.



Fig. 5. Comparison of subtracted images between the GT and FBP images (upper) and the GT and CAE images (lower) for three sample patterns of missing fuel rods.

Fig. 6. Comparison of the de-noising performance of the CAE model for four different FBP image qualities obtained by scanning the assembly for 0.6, 10, 20, and 60 min.
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4. Conclusion

In this study, the de-noised image reconstruction technique
using the CAEmodel was developed for increasing the tomographic
image acquisition speed to reduce the total verification time of the
fuel assembly as following the IAEA recommendation. The results of
this study showed the capability of the CAE model for a great
improvement of the image quality from the FBP images almost
similarly with the GT images. Even though the quality of the FBP
image, input image of the CAE model, becomes bad, the CAE model
could also discriminate the patterns of missing fuel rods similarly to
when the image quality was the best. In the future, an optimization
study of the CAE model will be performed to apply this model to
experimentally obtained tomographic images of an unirradiated
test fuel assembly installed in the Korea Institute of Nuclear
Nonproliferation And Control. Also, additional experiments for
applying proposed model to extended fuel assembly environments
(e.g. 16� 16 or 19� 19 fuel assembly) will be conducted in further
research.
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