• Title/Summary/Keyword: image SNR

Search Result 489, Processing Time 0.027 seconds

A Double-channel Four-band True Color Night Vision System

  • Jiang, Yunfeng;Wu, Dongsheng;Liu, Jie;Tian, Kuo;Wang, Dan
    • Current Optics and Photonics
    • /
    • v.6 no.6
    • /
    • pp.608-618
    • /
    • 2022
  • By analyzing the signal-to-noise ratio (SNR) theory of the conventional true color night vision system, we found that the output image SNR is limited by the wavelength range of the system response λ1 and λ2. Therefore, we built a double-channel four-band true color night vision system to expand the system response to improve the output image SNR. In the meantime, we proposed an image fusion method based on principal component analysis (PCA) and nonsubsampled shearlet transform (NSST) to obtain the true color night vision images. Through experiments, a method based on edge extraction of the targets and spatial dimension decorrelation was proposed to calculate the SNR of the obtained images and we calculated the correlation coefficient (CC) between the edge graphs of obtained and reference images. The results showed that the SNR of the images of four scenes obtained by our system were 125.0%, 145.8%, 86.0% and 51.8% higher, respectively, than that of the conventional tri-band system and CC was also higher, which demonstrated that our system can get true color images with better quality.

Evaluation of the Image Quality According to the Pre-set Method in PET/CT Image (PET/CT 영상 획득 시 사전설정법 차이에 따른 영상 질 평가)

  • Park, Sun-Myung;Lee, Hyuk;Hong, Gun-Chul;Chung, Eun-Kyung;Choi, Choon-Ki;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.2
    • /
    • pp.41-46
    • /
    • 2011
  • Purpose: The result of exam using an imaging device is very closely related with the image quality. Moreover, this image quality can be changed according to the condition of image acquisition and evaluation method. In this study, we evaluated the image quality according to the difference of pre-set method in PET/CT image. Materials & Methods: PET/CT Discovery STe16 (GE Healthcare, Milwaukee, USA), Chest PET phantom (Experiment 1) and 94 NEMA phantom (Experiment 2) were used. Phantom were filled with $^{18}F$-FDG maintaining hot sphere and background ratio to 4:1. In the case of experiment 1, we set the radio activity concentration on 3.5, 6.0, 8.6 kBq/mL. In the case of experiment 2, we set the radio activity concentration on 3.3, 5.5, 7.7, 9.9, 12.1, 16.5 kBq/mL. All experiments were performed with the time-set method for 2 minutes 30 seconds per frame and the count-set method with one hundred million counts in 3D mode after CT transmission scan. For the evaluation of the image quality, we compared each results by using the NECR and SNR. Results: In the experiment 1, both the NECR and SNR were increased as radioactivity concentration getting increased. The NECR was shown as 53.7, 66.9, 91.4. and SNR was shown as 7.9, 10.0, 11.7. Both the NECR and SNR were increased in time-set method. But the count-set method's pattern was not similar with the time-set method. The NECR was shown as 53.8, 69.1, 97.8, and SNR was shown as 14.1, 14.7 14.4. The SNR was not increased in count-set method. In experiment 2, results of both the NECR and SNR were shown as 45.1, 70.6, 95.3, 115.6, 134.6, 162.2 and 7.1, 8.8, 10.6, 11.5, 12.7, 14.0. These results were shown similar patten with the experiment 1. Moreover, when the count-set method was applied, the NECR was shown as 42.1, 67.3, 92.1, 112.2, 130.7, 158.7, and SNR was shown as 15.2, 15.9, 15.6, 15.4, 15.5, 14.9. The NECR was increased but SNR was not shown same pattern. Conclusion: Increment of administered radioactivity improves the quality of image unconcerned with the pre-set method. However, NECR was not influenced by increment of total acquisition counts through simple increasing scan duration without increment of administered activity. In case of count-set method, the SNR was shown similar value despite of increment of radioactivity. So, the administered activity is more important than the scan duration. And we have to consider that evaluation of image quality using only SNR may not be appropriate.

  • PDF

Effect of the Signal-to-Noise Power Spectra Ratio on MTF Compensated EOC Images

  • Kang, Chi-Ho;Choi, Hae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.1
    • /
    • pp.43-52
    • /
    • 2003
  • EOC (Electro-Optical Camera) of KOMPSAT-1 (Korea Multi-Purpose SATellite) has been producing land imageries of the world since January 2000. After image data are acquired by EOC, they are transmitted from satellite to ground via X-band RF signal. Then, EOC image data are retrieved and pass through radiometric and geometric corrections to generate standard products of EOC images. After radiometric correction on EOC image data, Modulation Transfer Function (MTF) compensation is applicable on EOC images with user's request for better image quality. MTF compensation is concerned with filtering EOC images to minimize the effect of degradations. For Image Receiving and Processing System (IRPE) at KOMPSAT Ground Station (KGS), Wiener filter is used for MTF compensation of EOC images. If the Pointing Spread Function (PSF) of EOC system is known, signal-to-noise (SNR) power spectra ratio is the only variable which determines the shape of Wiener filter In this paper, MTF compensation in IRPE at KGS is briefly addressed, and MTF compensated EOC images are generated using Wiener filters with various SNR power spectra ratios. MTF compensated EOC images are compared with original EOC 1R images to observe correlations between them. As a result, the effect of SNR power spectra ratio on MTF compensated EOC images is shown.

Comparison Study of Image Performance with Contrast Agent Contents for Brain Magnetic Resonance Imaging

  • Lee, Youngjin;Choi, Min Hyeok;Goh, Hee Jin;Han, Dong-Kyoon
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.281-285
    • /
    • 2016
  • The purpose of study was to evaluate SNR and CNR with different contrast agent contents (1.0 mmol/mL gadobutrol and 0.5 mmol/mL gadoterate meglumine) for spin echo (SE) and 3-dimension contrast-enhanced fast field echo (3D CE-FFE) pulse sequences. In this study, we compared the SNR and the CNR between 0.5 mmol/mL gadoterate meglumine and 1.0 mmol/mL gadobutrol according to the concentration of contrast agent in brain MRI. When we compared between SE and 3D CE-FFE pulse sequences, the higher SNR and CNR using 3D CE-FFE pulse sequence can be acquire regardless of contrast agent contents. Also, a statistically significant difference was found for SNR and CNR between all protocols. In conclusion, our results demonstrated that the SNR and CNR have not risen proportionately with contrast agent contents. We hope that these results presented in this paper will contribute to decide contrast agent contents for brain MRI.

Quantitative and Qualitative Evaluation according to Radiation Dose Conditions when using MAR function in Implant examination from Cone Beam CT (ConeBeam CT로 임플란트 검사 시 MAR 기능 유무와 선량조건에 따른 정량적 및 정성적 평가)

  • Hyun-Jun, Ahn;Sang-Hyun, Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.7
    • /
    • pp.905-917
    • /
    • 2022
  • This study was conducted to evaluate the use of the MAR function and the image quality of the image when examining with each radiation dose. A simple Periapical phantom was made to set up an implant, and images were obtained and analyzed according to the presence or absence of MAR function for each radiation dose using CBCT equipment. In this study, MEAN, SNR, and CNR values were obtained using the Image J program, and through statistical analysis, images were the most quantitative and suitable values when the Abutment of Implant was 100 kVp and 8 mA, and when the Center of Implant and Apex of Implant were 100 kVp and 9 mA. As a result, it was confirmed that if the radiation dose increased, the Pixel Value, SNR, and CNR values of the image rose up so that the quality of the image improved, and using the MAR function reduced artifacts.

Using Image J program, compared of focusing distance and grid rate (Image J 프로그램을 이용한 격자집속거리와 격자비에 따른 영상비교평가)

  • Seo, Won-Joo;Seo, Jeong-Beom;Lee, Jong-Woong
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.14 no.1
    • /
    • pp.37-42
    • /
    • 2012
  • Pediatric head and neck phantom, using the rate by focusing distance and grid images, Image J using the Quality Assessment and Dose Area Product compared. X-ray laboratory equipment due to the Philips Digital DIAGNOST a 110 cm FFD set and using ACE Non-grid, focusing distance 110 cm (12 : 1), 140 cm (12 : 1), 180 cm (8 : 1) Focused grid, Acryl Phantom (Fluke Model 76-2 Series Phantom) 15.24 cm, by resolution chart image acquisition, image evaluation program (Image J Ver. 1.4.3.67, USA) imaging experiments were analyzed using. Dose Area Product in the Non Grid 0.028 $mGy{\cdot}cm^2$, focusing distance 110 cm (12 : 1), the 0.129 $mGy{\cdot}cm^2$, 140 cm (12 : 1), the 0.135 $mGy{\cdot}cm^2$, 180 cm (8 : 1) was measured with a 0.110 $mGy{\cdot}cm^2$ Non Grid, focusing distance 110 cm (12 : 1), 140 cm (12 : 1), 180 cm (8 : 1) Image obtained when grid using the image J program focusing distance 110 cm with grid based on the measured SNR and PSNR Non Grid if the SNR the 17.307 dB, PSNR of the 20.002 dB, if the SNR 28.755 dB, PSNR was measured by the 31.451 dB. Image J image analysis through the streets, rather than focusing on grid by the rate that could see an increase in dose. Select the grid by a small dose rate reduction is possible.

  • PDF

Image Evaluation by Metallic Hip Prosthesis in Computed Tomography Examination (컴퓨터단층촬영검사에서 고관절 삽입물에 의한 영상평가)

  • Min, Byung-In;Im, In-Chul
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.3
    • /
    • pp.281-288
    • /
    • 2022
  • In this study, four algorithms (Soft, Standard, Detail, Bone) were used for general CT scan (Before MAR) images and MAR (After MAR) images for patients with metal implants inserted into the hip joint. was applied to compare and analyze Noise, SNR, and CNR to find out the optimal algorithm for quantitative evaluation. As the analysis method, Image J program, which can calculate image analysis and area and pixel values on the image reconstructed with four algorithms, was used. In order to obtain Noise, SNR, and CNR, the HU mean value and HU SD value were obtained by designating the bone (ischium) closest to the metal implant in the image for the measurement site, and the background noise was the surrounding muscle. The region of interest (ROI) was equally designated as 15 × 15 mm in consideration of the size of the bone, and the values of SNR and CNR were calculated according to the given equation. As a result, for noise, After MAR and Soft algorithms showed the lowest noise, and SNR and CNR showed the highest for Before MAR and Soft algorithms. Therefore, the soft algorithm is judged to be the most appropriate algorithm for metal implant hip joint CT.

Head & Neck CT Scan Image Evaluation for Implant Surgery Patients (임플란트 시술환자에 대한 두경부 CT검사 영상 평가)

  • Hyung-Seok Hwang;Hyung-Seok Hwang;In-Chul Im
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.843-849
    • /
    • 2023
  • This study attempted to determine the optimal algorithm after quantitatively analyzing noise, SNR, and CNR measurements by reconstructing four algorithms (Standard, Soft, Bone, and Detail) from head and neck CT images of patients who underwent implant surgery. As an analysis method, pixel values were calculated through the region of interest in the reconstructed image using the Image J program. For noise, SNR, and CNR, the region of interest was measured at the location of the pharynx, masseter muscle, and parotid gland in the image, and the mean and SD values were obtained. The values of SNR and CNR were calculated based on the given formula. As a result, the standard algorithm showed the lowest noise and the highest SNR. CNR was highest in the Soft algorithm, but showed no significant difference from the Standard algorithm. Therefore, it is believed that the Standard algorithm is the optimal algorithm for examining patients wearing intraoral implants in head and neck CT examinations. We hope that the data from this study will be used as basic data for image evaluation in head and neck CT examinations, and that the quality of images will be further improved through various algorithm changes. It is believed that this will be an opportunity to do so.

A Study on the Interferometer Configuration for Improvement of Signal-to-Noise Ratio of Optical Coherence Tomography System (OCT 시스템의 SNR 향상을 위한 간섭계 개선에 관한 연구)

  • Yang, Sung-Kuk;Park, Yang-Ha;Chang, Won-Suk;Oh, Sang-Ki
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.5
    • /
    • pp.126-131
    • /
    • 2004
  • As a noninvasive imaging method, optical coherence tomography system has been extensively studied because it has some advantages such as imaging of high resolution, low cost, and compact size configuration. In order to improve the SNR of OCT system, two types of interferometers were configured and then, we compared simulation with measurement of reference sample. In the OCT system is configured with Michelson interferometer, the contrast of cross-sectional image is reduced with low SNR detection which is due to loss of feedback interference signal from light source part. Also, in order to image measured data with real time, image processing program is constructed. From results of simulation, it is confirmed that improved Michelson interferometer is improved about 10[dB] with a 50 : 50 fiber coupler. And from the measurement of reference sample, about 5[dB] is improved with a 50 : 50 fiber coupler. It is confirmed that the OCT system is configured with the improved Michelson interferometer which has a good distinctive cross-sectional image due to higher contrast.

Image Denoising for Metal MRI Exploiting Sparsity and Low Rank Priors

  • Choi, Sangcheon;Park, Jun-Sik;Kim, Hahnsung;Park, Jaeseok
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.4
    • /
    • pp.215-223
    • /
    • 2016
  • Purpose: The management of metal-induced field inhomogeneities is one of the major concerns of distortion-free magnetic resonance images near metallic implants. The recently proposed method called "Slice Encoding for Metal Artifact Correction (SEMAC)" is an effective spin echo pulse sequence of magnetic resonance imaging (MRI) near metallic implants. However, as SEMAC uses the noisy resolved data elements, SEMAC images can have a major problem for improving the signal-to-noise ratio (SNR) without compromising the correction of metal artifacts. To address that issue, this paper presents a novel reconstruction technique for providing an improvement of the SNR in SEMAC images without sacrificing the correction of metal artifacts. Materials and Methods: Low-rank approximation in each coil image is first performed to suppress the noise in the slice direction, because the signal is highly correlated between SEMAC-encoded slices. Secondly, SEMAC images are reconstructed by the best linear unbiased estimator (BLUE), also known as Gauss-Markov or weighted least squares. Noise levels and correlation in the receiver channels are considered for the sake of SNR optimization. To this end, since distorted excitation profiles are sparse, $l_1$ minimization performs well in recovering the sparse distorted excitation profiles and the sparse modeling of our approach offers excellent correction of metal-induced distortions. Results: Three images reconstructed using SEMAC, SEMAC with the conventional two-step noise reduction, and the proposed image denoising for metal MRI exploiting sparsity and low rank approximation algorithm were compared. The proposed algorithm outperformed two methods and produced 119% SNR better than SEMAC and 89% SNR better than SEMAC with the conventional two-step noise reduction. Conclusion: We successfully demonstrated that the proposed, novel algorithm for SEMAC, if compared with conventional de-noising methods, substantially improves SNR and reduces artifacts.