Browse > Article
http://dx.doi.org/10.4283/JMAG.2016.21.2.281

Comparison Study of Image Performance with Contrast Agent Contents for Brain Magnetic Resonance Imaging  

Lee, Youngjin (Department of Radiological Science)
Choi, Min Hyeok (Department of Radiological Science)
Goh, Hee Jin (Department of Radiology, Asan Medical Center)
Han, Dong-Kyoon (Department of Radiological Science)
Publication Information
Abstract
The purpose of study was to evaluate SNR and CNR with different contrast agent contents (1.0 mmol/mL gadobutrol and 0.5 mmol/mL gadoterate meglumine) for spin echo (SE) and 3-dimension contrast-enhanced fast field echo (3D CE-FFE) pulse sequences. In this study, we compared the SNR and the CNR between 0.5 mmol/mL gadoterate meglumine and 1.0 mmol/mL gadobutrol according to the concentration of contrast agent in brain MRI. When we compared between SE and 3D CE-FFE pulse sequences, the higher SNR and CNR using 3D CE-FFE pulse sequence can be acquire regardless of contrast agent contents. Also, a statistically significant difference was found for SNR and CNR between all protocols. In conclusion, our results demonstrated that the SNR and CNR have not risen proportionately with contrast agent contents. We hope that these results presented in this paper will contribute to decide contrast agent contents for brain MRI.
Keywords
magnetic resonance imaging; quantitative image analysis; MR-angiography (MRA);
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 A. Lignelli and A. G. Khandji, Neurosurg. Clin. N. Am. 22, 15 (2011).   DOI
2 C. P. Kellner and A. L. D'Ambrosio, Neurosurg. Clin. N. Am. 22, 53 (2011).   DOI
3 K. Yokoi, N. Kamiya, H. Matsuguma, S. Machida, T. Hirose, K. Mori, and K. Tominaga, Chest 115, 714 (1999).   DOI
4 T. C. Ryken, M. McDermott, P. D. Robinson, M. Ammirati, D. W. Andrews, A. L. Asher, S. H. Burri, C. S. Cobbs, L. E. Gaspar, D. Kondziolka, M. E. Linskey, J. S. Loeffler, M. P. Mehta, T. Mikkelsen, J. J. Olson, N. A. Paleologos, R. A. Patchell, S. N. Kalkanis, and G. C. Giakos, J. Neurooncol. 96, 103 (2010).   DOI
5 R. Soffietti, R. Ruda, and R. Mutani, J. Neurol. 249, 1357 (2002).   DOI
6 A. A. Postma, P. A. M. Hofman, A. A. R. Stadler, R. J. van Oostenbrugge, M. P. M. Tijssen, and J. E. Wildberger, AJR 199, S26 (2012).   DOI
7 P. C. Davis, P. A. Hudgins, S. B. Peterman, and J. C. Hoffman, AJNR 12, 293 (1991).
8 M. Filippi, T. Yousry, C. Baratti, M. A. Horsfield, S. Mammi, C. Becker, R. Voltz, S. Spuler, A. Campi, M. F. Reiser, and G. Comi, Brain 119, 1349 (1996).   DOI
9 T. Barrett, H. Kobayashi, M. Brechbiel, and P. L. Choyke, Eur. J. Radiol. 60, 353 (2006).   DOI
10 U. I. Attenberger, V. M. Runge, C. B. Jackson, S. Baumann, K. Birkemeier, H. J. Michaely, S. O. Schoenberg, M. F. Reiser, and B. J. Wintersperger, Invest. Radiol. 44, 251 (2009).   DOI
11 B.-D. Jo, Y.-J. Lee, D.-H. Kim, and H.-J. Kim, J. Kor. Phys. Soc. 65, 541 (2014).   DOI
12 P. H. Kuo, E. Kanal, A. K. Abu-Alfa, and S. E. Cowper, Radiology 242, 647 (2007).   DOI
13 J. Biswas, C. B. Nelson, V. M. Runge, B. J. Wintersperger, S. S. Baumann, C. B. Jackson, and T. Patel, Invest. Radiol. 40,792 (2005).   DOI
14 K. J. Chang, I. R. Kamel, K. J. Macura, and D. A. Bluemke, RadioGraphics 28, 1983 (2008).   DOI