• Title/Summary/Keyword: icing

Search Result 237, Processing Time 0.028 seconds

Temperature Analysis of Overhead Contact line Using De-icing System (해빙 시스템을 이용한 전차선 온도 특성에 관한 연구)

  • Park, Young;Kwon, Sam-Young;Jung, Ho-Sung;Park, Hyun-Jun;Cho, Young-Hyeon;Kim, Joo-Rak;Ahn, Byeong-Lib;Won, Woo-Sik;Lee, Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.601-602
    • /
    • 2005
  • In the cold and temperate regions of Korea the icing and ice coats on 25 kV overhead contact wire during winter is a very serious problem. This generates shocks at the mechanical interface of the collecting strips of the pantograph and the contact wire and extra electrical resistance, which may affect quality of current collection at the contact wire / collecting strips of pantograph interface. De-icing operations should be performed just before train operation to avoid the formation of another ice layer. This paper presents temperature analysis of the de-icing system which could be applied to the overhead contact wire of railways.

  • PDF

De-icing of the hydrophobic treated nanoporous anodic aluminum oxide layer (소수성 처리된 나노다공성 알루미늄 양극산화피막의 제빙)

  • Shin, Yeji;Kim, Jinhui;Shin, Dongmin;Moon, Hyung-Seok;Lee, Junghoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.5
    • /
    • pp.222-229
    • /
    • 2021
  • Icing causes various serious problems, where water vapor or water droplets adhere at cold conditions. Therefore, understanding of ice adhesion on solid surface and technology to reduce de-icing force are essential for surface finishing of metallic materials used in extreme environments and aircrafts. In this study, we controlled wettability of aluminum alloy using anodic oxidation, hydrophobic coating and lubricant-impregnation. In addition, surface porosity of anodized oxide layer was controlled to realize superhydrophilicity and superhydrophobicity. Then, de-icing force on these surfaces with a wide range of wettability and mobility of water was measured. The results show that the enhanced wettability of hydrophilic surface causes strong adhesion of ice. The hydrophobic coating on the nanoporous anodic oxide layer reduces the adhesion of ice, but the volume expansion of water during the freezing diminishes the effect. The lubricant-impregnated surface shows an extremely low adhesion of ice, since the lubricant inhibits the direct contact between ice and solid surface.

Development of a Low-power Walk-way for Anti-Icing (결빙 방지를 위한 저전력 갑판이동로 개발)

  • Bae, Sang-Eun;Cho, Su-gil;Lee, Woon-Seek
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.3
    • /
    • pp.353-364
    • /
    • 2019
  • The walk-way means a passage installed on the deck of a ship so that a person can safely move under any circumstances. So, the walk-way has to maintain a temperature of $5^{\circ}C$ or more for anti/de-icing even at an ambient temperature of $-62^{\circ}C$, a temperature in polar region. At present, the walk-way with heating cable is used, but the anti/de-icing effect is insufficient due to low heat transfer efficiency. Also, it has a construction problem due to heavy weight. In this study, an walk-way with a CNT surface heating element is proposed for the high anti/de-icing effect and the heating value per unit volume. The international standard survey, conceptual design, and simulation for the structural safety and the heat transfer are performed for the development of the proposed walk-way. To enhance the performance, the case studies based on the simulation analysis are conducted. Finally, the final prototype, applying the optimum material and thickness (3.2t of SS400) based on the case study results, is fabricated and experimented.

Anti-Icing Characteristics of Aluminum 6061 Alloys According to Surface Nanostructure (알루미늄 6061 합금의 표면 나노 구조물 변화에 따른 방빙 특성 연구)

  • Rian, Kim;Chanyoung, Jeong
    • Corrosion Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.476-486
    • /
    • 2022
  • Recently, aluminum 6061 instead of copper alloy is used for cooling heat exchangers used in the internal combustion of engines due to its economic feasibility, lightweight, and excellent thermal conductivity. In this study, aluminum 6061 alloy was anodized with oxalic acid, phosphoric acid, or chromic acid as an anodizing electrolyte at the same concentration of 0.3 M. After the third anodization, FDTS, a material with low surface energy, was coated to compare hydrophobic properties and anti-icing characteristics. Aluminum was converted into an anodization film after anodization on the surface, which was confirmed through Energy Dispersive X-ray Spectroscopy (EDS). Pore distance, interpore distance, anodization film thickness, and solid fraction were measured with a Field Emission Scanning Electron Microscope (FESEM). For anti-icing, hydrophobic surfaces were anodized with oxalic acid, phosphoric acid, or chromic acid solution. The sample anodized in oxalic acid had the lowest solid fraction. It had the highest contact angle for water droplets and the lowest contact hysteresis angle. The anti-icing contact angle showed a tendency to decrease for specimens in all solutions.

Chloride Diffusion of Concrete in Presence of De-icing Salt (제설제로부터 기인한 염화물의 콘크리트 확산특성)

  • Cheong, Hai-Moon;Ahn, Tas-Song
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.507-510
    • /
    • 2005
  • In winter, a large amount of de-icing salts such as $CaCl_2$, NaCl have been used on highways for road safety. They make concrete structures deteriorated. In this study, the chloride diffusion of concrete in presence of de-icing salt was investigated. The diffusion coefficient of chloride in presence of $CaCl_2$ solution was larger than in presence of NaCl solution. Therefore, it is necessary to assess chloride profile in presence of $CaCl_2$ by different way from the case in presence of NaCl solution or seawater.

  • PDF

The Investigation of Deteriortion of Concrete Structures due to the De-icing Salts (융빙제 사용으로 인해 열화된 콘크리트 구조물의 내구성 조사)

  • 문한영;김성수;류재석;김홍삼
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.77-82
    • /
    • 1996
  • The study was performed for the purpose of obtaining the fundamental data to improve the durability of concrete structures due to de-icing salts. To assume the degree of concrete deterioration, soluble chloride content in concrete, the depth of carbonation and compressive strength of core specimens were measured. The porgress of corrosion of concrete bridge was electrochemically monitored. The results show that the concrete structure was deteriorated and reinforced steel in concrete was corroded due to de-icing salts.

  • PDF

AN EULERIAN-BASED DROPLET IMPINGEMENT AND ICE ACCRETION CODE FOR AIRCRAFT ICING PREDICTION (항공기 결빙 예측을 위한 Eulerian 기반 액적 충돌 및 결빙 증식 코드)

  • Jung, S.K.;Myong, R.S.;Cho, T.H.
    • Journal of computational fluids engineering
    • /
    • v.15 no.2
    • /
    • pp.71-78
    • /
    • 2010
  • As a step toward accurate prediction of droplet impingement and ice accretion on aircraft, an Eulerian-based droplet impingement and ice accretion code for air flows around an airfoil containing water droplets is developed. A CFD solver based on the finite volume method was also developed to solve the clean airflow. The finite-volume-based approach for simulating droplet impingement on an airfoil was employed owing to its compatibility with the CFD solver and robustness. For ice accretion module, a simple model based on the control volume is combined with the droplet impingement module that provides the collection efficiency. To validate the present code, it is compared with NASA Glenn IRT (Icing Research Tunnel) experimental data and other well-known icing codes such as LEWICE and FENSAP-ICE. It is shown that the collection efficiency and shape of ice accretion are in good agreement with previous experimental and simulation results.

Development of cold weather concrete by using do-icing agency (방동제를 이용한 한중 콘크리트 개발 연구)

  • 유성원;서정인
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.953-958
    • /
    • 2001
  • The concrete which has placed under cold weather has some defects such as the decrease of initial strength by hydration delay, strength unrecover at unhardened concrete freezing and structural failure and crack by expansion pressure. So, in this study, we tried to develope the concrete which can be made under cold weather without defect by using of do-icing agency In concrete test, the used do-icing agency has the characteristics of de-icing and rapid hydration. By test results, Co{$NH_{2}$$]_{2}$is unsuitable for workability, and NaN$O_{2}$ is the most suitable agency for cold weather. And for curing, the cured concrete at $21^{\circ}C$ for 24 hours has the safe strength.

  • PDF

An Experimental Study on the Deterioration of Concrete Due to De-icing Salts (융빙제에 의한 콘크리트의 내구성능 저하에 관한 실험적 연구)

  • 고경택;류금성;이종석;김도겸;김성욱;이장화
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.973-978
    • /
    • 2001
  • In clod weather regions, a strong seasonal wind brings sea salts to the land. In addition to it, recently, the spreading amount of de-icing salts has increased numerously for the purpose of removing snow and ice. Thus the salts environment around concrete structures becomes so severe that various damages of concrete due to applied salts will be brought up. It is briskly carried out study on effects of do-icing salts on concrete in America, Japan, European countries. However, there are not test method for the deterioration of concrete subjected to both freezing-thawing and chloride attack in Korea. In this study, we conduct on test for the compound deterioration subjected to both freezing-thawing and chloride attack, in order to investigate effects of de-icing salts on the deterioration of concrete.

  • PDF

ICING EFFECTS ON AERODYNAMIC CHARACTERISTICS OF THE MAIN WING SECTION OF KC-100 AIRCRAFT (KC-100 항공기 주날개의 결빙에 의한 공력 영향성 연구)

  • Lee, C.H.;Sin, S.M.;Jung, S.K.;Myong, R.S.;Cho, T.H.;Jung, J.H.;Jeong, H.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.464-467
    • /
    • 2010
  • Ice accretion on aircraft surface in icing condition induces external shape changes that may result in a hazard factor for aircraft safety. In case of aircraft main wing with high lift equipment, ice accretion is observed around leading edge and flap. During the design phase, location of ice accretion and associated aerodynamic characteristics must be investigated. In this study, icing effects on aerodynamic characteristics of the main wing section of KC-100 aircraft are investigated using an Eulerian-based FENSAP-ICE code in various icing conditions.

  • PDF