AN EULERIAN-BASED DROPLET IMPINGEMENT AND ICE ACCRETION CODE FOR AIRCRAFT ICING PREDICTION

항공기 결빙 예측을 위한 Eulerian 기반 액적 충돌 및 결빙 증식 코드

  • 정성기 (경상대학교 대학원 기계항공공학부) ;
  • 명노신 (경상대학교 기계항공공학부 항공기부품기술연구소) ;
  • 조태환 (경상대학교 기계항공공학부 항공기부품기술연구소)
  • Received : 2010.03.09
  • Accepted : 2010.05.28
  • Published : 2010.06.30

Abstract

As a step toward accurate prediction of droplet impingement and ice accretion on aircraft, an Eulerian-based droplet impingement and ice accretion code for air flows around an airfoil containing water droplets is developed. A CFD solver based on the finite volume method was also developed to solve the clean airflow. The finite-volume-based approach for simulating droplet impingement on an airfoil was employed owing to its compatibility with the CFD solver and robustness. For ice accretion module, a simple model based on the control volume is combined with the droplet impingement module that provides the collection efficiency. To validate the present code, it is compared with NASA Glenn IRT (Icing Research Tunnel) experimental data and other well-known icing codes such as LEWICE and FENSAP-ICE. It is shown that the collection efficiency and shape of ice accretion are in good agreement with previous experimental and simulation results.

Keywords

References

  1. 2000, Gent, R.W., Dart, N.P. and Cansdale, J.T., "Aircraft Icing," Phil. Trans. R. Soc. Lond., Vol.358, pp.2873-2911. https://doi.org/10.1098/rsta.2000.0689
  2. 2005, Bragg, M.B., Broeren, A.P. and Blumenthal, L.A., "Iced-Airfoil Aerodynamics," Progress in Aerospace Sciences, Vol.41, pp.323-362. https://doi.org/10.1016/j.paerosci.2005.07.001
  3. 2001, Lynch, F.T. and Khodadoust, A., "Effects of Ice Accretions on Aircraft Aerodynamics," Progress in Aerospace Sciences, Vol.37, pp.669-767. https://doi.org/10.1016/S0376-0421(01)00018-5
  4. 1998, Kind, R.J., Potapczuk, M.G., Feo, A., Golia, C. and Shah, A.D., "Experimental and Computational Simulation of In-Flight Icing Phenomena," Progress in Aerospace Sciences, Vol.34, pp.257-345. https://doi.org/10.1016/S0376-0421(98)80001-8
  5. NTI Solutions User Manual, Numerical Technologies Int.
  6. 2005, Kim, S.D. and Song, D.J., "Computations of Droplet Impingement on Airfoils in Two-Phase Flow," KSME Int. J., Vol.19, No.12, pp.2312-2320.
  7. 2009, 신훈범, 최원, 서석주, 유진복, "2차원 에어포일에서의 결빙부착 수치해석," 한국전산유체공학회 춘계학술대 회논문집, pp.21-26.
  8. 2009, 백선우, 이관중, 오세종, "2차원 날개의 서리얼음 형상 예측," 한국전산유체공학회지, 제14권, 제1호, pp.45-52.
  9. 2005, Blazek, J., Computational Fluid Dynamics: Principles and Application, Elsevier.
  10. 1999, Bourgault, Y., Habashi, W.G., Dompierre, J. and Baruzzi, G.S., "A Finite Element Method Study of Eulerian Droplets Impingement Models," Int. J. Numer. Meth. Fluids, Vol.29, pp.429-449. https://doi.org/10.1002/(SICI)1097-0363(19990228)29:4<429::AID-FLD795>3.0.CO;2-F
  11. 2003, Beaugendre, H., Morency, F. and Habashi, W.G., "FENSAP-ICE's Three-Dimensional In-Flight Ice Accretion Module: ICE3D," J. Aircraft, Vol.40, No.2, pp.239-247. https://doi.org/10.2514/2.3113
  12. 2008, Cao, Y., Zhang, Q. and Sheridan, J., "Numerical Simulation of Rime Ice Accretions on an Aerofoil Using an Eulerian Method," The Aeronautical Journal, Vol.112, No.1131, pp.243-249.
  13. 2007, Hoang, A.D., Lee, Y.M., Jung, S.K., Nguyen, A.T. and Myong, R.S., "Development of a Three-Dimensional Multi-Block Structured Grid Deformation Code for Complex Configurations," 한국전산유체공학회지, 제12권, 제4호, pp.1-10.
  14. 2008, 정성기, 두온안호앙, 이영민, 이진희, 명노신, 조태환, "항공기 공력특성 예측을 위한 Navier-Stokes 방정식기반의 정적 유체-구조 연계 해석 시스템," 한국항공우주학회지, 제36권, 제6호, pp.532-540.
  15. 2009, 정성기, 명노신, 조태환, "천음속 영역의 조파항력감소를 위한 효율적인 전역적 최적화 기법 연구," 한국항공우주학회지, 제37권, 제3호, pp.248-254.
  16. http://www.grc.nasa.gov/www/wind/valid/raetaf/raetaf01/raetaf01.html.
  17. 2002, Vargas, M., Papadakis, M., Potapczuk, M., Addy, H., Sheldon, D. and Giriunas, J., "Ice Accretions on a Swept GLC-305 Airfoil," NASA/TM-2002-211557.
  18. 1999, Wright, W.B. and Rutkowski, A., "Validation Results for LEWICE 2.0," NASA/CR-1999-208690.