• Title/Summary/Keyword: ice content

Search Result 161, Processing Time 0.021 seconds

Frost-Heaving Characteristics of Soil Mixed with Discarded Tire Powder (폐타이어 파우더 혼합토의 동상 특성)

  • Kim, Hak-Sam;Seo, Sang-Youl;Nakamura, Dai;Fukuda, Masami;Yamashita, Satoshi;Suzuki, Teruyuki
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.4
    • /
    • pp.15-26
    • /
    • 2010
  • To determine the frost heave suppressing mechanism of soil mixed with tire powder, we conducted three kinds of laboratory experiments: measurement of unfrozen water, evaluation of thermal conductivity, and a frost heave. In this research, we focused on changes in the coefficient of permeability of the mixed soil, and first found that of the unsaturated soil. Next, in the case of the presence of ice, we took the ice-impeding factor into consideration to derive the coefficient of permeability of the frozen fringe from the area ratio of the soil and tire powder in mixed soil. The results show a positive correlation between the water intake rate and the coefficient of permeability. Moreover, we found that the frost heave decreased thanks to a reduction in the permeability and a fall in the unfrozen water content of the soil mixed with tire powder. We also calculated the weight of the water content of the soil and tire powder void quantitatively using the result of the volumetric ratio of mixed soil.

Impacts of Aerosol Loading on Surface Precipitation from Deep Convective Systems over North Central Mongolia

  • Lkhamjav, Jambajamts;Lee, Hyunho;Jeon, Ye-Lim;Seo, Jaemyeong Mango;Baik, Jong-Jin
    • Asia-Pacific Journal of Atmospheric Sciences
    • /
    • v.54 no.4
    • /
    • pp.587-598
    • /
    • 2018
  • The impacts of aerosol loading on surface precipitation from mid-latitude deep convective systems are examined using a bin microphysics model. For this, a precipitation case over north central Mongolia, which is a high-altitude inland region, on 21 August 2014 is simulated with aerosol number concentrations of 150, 300, 600, 1200, 2400, and $4800cm^{-3}$. The surface precipitation amount slightly decreases with increasing aerosol number concentration in the range of $150-600cm^{-3}$, while it notably increases in the range of $600-4800cm^{-3}$ (22% increase with eightfold aerosol loading). We attempt to explain why the surface precipitation amount increases with increasing aerosol number concentration in the range of $600-4800cm^{-3}$. A higher aerosol number concentration results in more drops of small sizes. More drops of small sizes grow through condensation while being transported upward and some of them freeze, thus increasing the mass content of ice crystals. The increased ice crystal mass content leads to an increase in the mass content of small-sized snow particles largely through deposition, and the increased mass content of small-sized snow particles leads to an increase in the mass content of large-sized snow particles largely through riming. In addition, more drops of small sizes increase the mass content of supercooled drops, which also leads to an increase in the mass content of large-sized snow particles through riming. The increased mass content of large-sized snow particles resulting from these pathways contributes to a larger surface precipitation amount through melting and collision-coalescence.

A Study on the Effect of Cold Application Using a Sponge Bath in Healthy Adults (냉요법 적용방법에 따른 냉요법 효과에 관한 연구-건강한 성인 여성에서 스폰지 목욕방법을 중심으로)

  • Chung, Hyun-Sook;Kang, Kyu-Sook;Hwang, Ae-Ran
    • The Korean Nurse
    • /
    • v.28 no.3
    • /
    • pp.68-82
    • /
    • 1989
  • This study was a quasi-experimental research study to test the characteristics of temperature regulation according to sponge bath methods of cold application. Thirteen volunteers were selected from among nursing college students according to an established criteria using a purposive sampling technique. Four different cold application methods were used: $\circled1$ tepid water sponge bath at $28^{\circ}C$, $\circled2$ 20% alcohol sponge bath at $28^{\circ}C$, $\circled3$ 40% alcohol sponge bath at $28^{\circ}C$ and $\circled4$ tepid water sponge bath at 28$^{\circ}$C plus an ice bag to the head. Changes in rectal temperature, mean skin temperature, mean body temperature, heat content change and thermal discomfort during the cold application were measured at 5 minute intervals over a 120 minute period. The data collection period was from Dec. 20, 1988 to Feb. 3, 1989. The data were analyzed using descriptive statistics, simple regression, ANOVA, Duncan's multiple range test and Pearson correlation coefficient using the SPSS-X Program. The results of the study are summarized as follows. Five general hypothesis were tested. Hypothesis 1 that "Change in heat content will be decreased for each cold application method according to the cold application time" was rejected. (tepid water sponge bath: after 10 minutes of cold application, 20% alcohol sponge bath: after 25 minutes of cold application: 40% alcohol sponge bath: after 45 minutes of cold application, tepid water sponge bath plus an ice bag to the head: after 80 minutes of cold application) Hypothesis 2 that "Thermal discomfort will be changed for each cold application method according to the cold application time" was rejected after 5minutes of cold application. Hypothesis 3 that "Change in heat content will differ among the cold application methods" was accepted except 0~5, 0~10, 0~65, 0~105 and 0~120 minute. This difference showed significance only between sponge bath methods and tepid water sponge bath plus an ice bag to the head. Hypothesis 4 that "Thermal discomfort will differ among the cold application methods" was accepted at 15, 20, 35, 45, 75, 80, 90, 95, 100, 105, 110, 115 and 120 minute of cold application time. This difference showed significance only between sponge bath methods and tepid water sponge bath plus an ice bag to the head. Hypothesis 5 that "The higher the change in heat content, the higher the thermal discomfort during the cold application time" was accepted for between 10~60 and 75 minute of cold application. In conclusion, this study showed that in sponge bath at $28^{\circ}C$, 10~80 minute was a effective cold application time in the view of heat loss through the skin. Concerning the effects of evaporation and thermal discomfort, it was found that there was no difference with regard to the solutions; tepid water sponge bath; 20% alcohol sponge bath or 40% alcohol sponge bath at a $28^{\circ}C$ controlled solution temperature. So it was thought that the type of solution itself did not have a big influence on the heat loss through skin. The combined effect of sponge bath with an ice bag to the head showed a significant difference and also showed a slight increase in thermal discomfort. On the basis of this research it can be concluded that cold application, for example, an ice bag to the head during a tepid water sponge bath is a good method as it increase heat loss through conduction, although fit can also cause a slight increase in thermal discomfort. The correlation between changes in heat content and thermal discomfort were not high. So factors other than change in heat content are considered to have an effect on the cognition of thermal discomfort.

  • PDF

Antioxidant and growth inhibitory activities of Mesembryanthemum crystallinum L. in HCT116 human colon cancer cells (아이스플랜트의 항산화 및 HCT116 인체 유래 대장암세포 성장억제 활성)

  • Seo, Jin A;Ju, Jihyeung
    • Journal of Nutrition and Health
    • /
    • v.52 no.2
    • /
    • pp.157-167
    • /
    • 2019
  • Purpose: This study examined the antioxidant and cancer cell growth inhibitory activities of an ethanol extract and different solvent fractions of Mesembryanthemum crystallinum L. (ice plant). Methods: The ice plant was freeze-dried, extracted with 99.9% ethanol, and then fractionated with hexane, ethyl acetate, butanol, and water. The total polyphenol content (TPC), total carotenoid content (TCC), 2,2-diphenyl-1-picrylhydrazyl radical-scavenging activity (RSA), and ferric reducing antioxidant power (FRAP) were measured. Assays using 2',7'-dichlorofluorescin-diacetate and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide were performed to measure the intracellular reactive oxygen species (ROS) and cell growth, respectively. Annexin V/propidium iodide staining and cell cycle analysis were performed for the detection of apoptosis and cell cycle arrest. Results: TPC, TCC, RSA, and FRAP of the ethanol extract (EE) were 3.7 mg gallic acid equivalent/g, $13.2{\mu}g/g$, 21.0% (at a concentration of 5 mg/mL), and 21.0% (at a concentration of 5 mg/mL), respectively. Among the different solvent fractions, the butanol fraction (BF) showed the highest TPC (5.4 mg gallic acid equivalent/g), TCC ($86.6{\mu}g/g$), RSA (34.9% at 5 mg/mL), and FRAP (80.8% at 5 mg/mL). Treatment of HCT116 human colon cancer cells with EE and BF at concentrations of 250 and $500{\mu}g/mL$ reduced the levels of intracellular ROS. Concomitantly, EE and BF resulted in the dose-dependent inhibition of cell growth (at the concentrations of 125, 250, and $500{\mu}g/mL$ for 24 ~ 48 h) and the induction of apoptosis (at the concentrations of 250 and $500{\mu}g/mL$ for 48 h) in HCT116 cells. An increased G2/M cell population was also found in the BF-treated cells. Conclusion: These results suggest that ice plant possesses antioxidant and growth inhibitory activities in colon cancer cells.

Variation of Biogenic Opal Production on the Conrad Rise in the Indian Sector of the Southern Ocean since the Last Glacial Period (남극해 인도양 해역에 위치한 콘래드 해령 지역의 마지막 빙하기 이후 생물기원 오팔 생산의 변화)

  • JuYeon Yang;Minoru Ikehara;Hyuk Choi;Boo-Keun Khim
    • Ocean and Polar Research
    • /
    • v.45 no.3
    • /
    • pp.141-153
    • /
    • 2023
  • Biological pump processes generated by diatom production in the surface water of the Southern Ocean play an important role in exchanging CO2 gas between the atmosphere and ocean. In this study, the biogenic opal content of the sediments was measured to elucidate the variation in the primary production of diatoms in the surface water of the Southern Ocean since the last glacial period. A piston core (COR-1bPC) was collected from the Conrad Rise, which is located in the Indian sector of the Southern Ocean. The sediments were mainly composed of siliceous ooze, and sediment lightness increased and magnetic susceptibility decreased in an upward direction. The biogenic opal content was low (38.9%) during the last glacial period and high (73.4%) during the Holocene, showing a similar variation to that of Antarctic ice core ΔT and CO2 concentration. In addition, the variation of biogenic opal content in core COR-1bPC is consistent with previous results reported in the Antarctic Zone, south of the Antarctic Polar Front, in the Southern Ocean. The glacial-interglacial biogenic opal production was influenced by the extent of sea ice coverage and degree of water column stability. During the last glacial period, the diatom production was reduced due to the penetration of light being limited in the euphotic zone by the extended sea ice coverage caused by the lowered seawater temperature. In addition, the formation of a strong thermocline in more extensive areas of sea ice coverage led to stronger water column stability, resulting in reduced diatom production due to the reduction in the supply of nutrient-rich subsurface water caused by a decrease in upwelling intensity. Under such environmental circumstances, diatom productivity decreased in the Antarctic Zone during the last glacial period, but the biogenic opal content increased rapidly under warming conditions with the onset of deglaciation.

Purification and Utilization of Industrial Waste Water Using Microorganism -(Part 1) Isolation of the yeast strain from organic waste water and its use on waste water treatment- (산업폐수의 처리 및 이용에 관한 연구 -(제 1 보) 효모균주의 분리와 이에 의한 유기성폐수의 처리에 관하여-)

  • Lee, Kang-Heup;Yim, Sung-Sam;Park, Tai-Won
    • Applied Biological Chemistry
    • /
    • v.20 no.2
    • /
    • pp.228-235
    • /
    • 1977
  • The yeast strain was isolated from food industry waste water and its identification and biological characteristics were investigated. The optimum condition for cultivations and its activities for the reduction of B.O.D. on the food industry waste water were also confirmed. The results are as follows; 1) The isolated was identified as Candida curvata. 2) Candida curvata grew well in all of the experimented media, so and it can be regarded as a useful strain in the treatment of food industry waste water. 3) There was only a slight difference in the induction period between sterilized cultivation and unsterilized cultivation. But in the ice cream waste water, the period was considerably longer in unsterilized cultivation. 4) Specific rate of growth of Candida curvata in sugar waste water was 0.50/hr, ice cream waste water 0.50/hr, and beer waste water 1.0/hr. 5) Increasing of innoculum reduced the induction period in unsterilized cultivation. 6) The amount of dried yeast from sugar waste water were $175mg/{\ell}$, ice cream waste water $628mg/{\ell}$, and beer waste water $857mg/{\ell}$. Crude protein content in the dried yeast from sugar waste water were 52%, ice cream waste water 54%, and beer waste water 54%. 7) The rate of BOD reduction in sugar waste water were 49%, ice cream waste water 80%, and beer waste water 64%.

  • PDF

Effects of an ice pack and sulfur generating pad treatment for home delivery on the quality of 'Duke' blueberry fruits

  • Lim, Byung-Seon;Choi, Mi-Hee;Lee, Jin-Su
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.4
    • /
    • pp.811-821
    • /
    • 2018
  • This study focused on the improvement of blueberry delivery service using pre-cooled ice and $SO_2$ pads to prevent an increase in the fruit temperature as well as decay. To maintain the fruit quality during low temperature storage, the effect of a $SO_2$ pad and modified atmosphere packaging was also examined. Harvested blueberries were precooled at $15^{\circ}C$, sorted, and packaged. And the fruits were placed in a similar environment as that for the parcel service. Part of the fruits were stored at $0^{\circ}C$ for long term storage. The air temperature in the delivery box increased along with an increase in the simulated delivery time regardless of the treatment. However, the rate of temperature increase was lower in the ice pad treatment. No significant difference was not found after 48 h. The oxygen concentration in the box ranged between 10.5 - 14.5% in the ice pad treatment, which was higher than that of the untreated control (7.5 - 11.9%) whereas the $CO_2$ concentration was lower in the ice pad treatment. No differences were found in the occurrence of off-flavor, decay, and sensory quality loss during the 48 hours of the parcel service simulation. The combined treatment of the $SO_2$ pad and modified atmosphere packaging (MAP) using a perforated film increased the shelf-life of the blueberry fruits, the overall quality such as firmness, and the soluble solid content was not different between the treatments except for the decay incidence. No decayed fruit was found in the combined treatment. However, the percentage of decayed fruit in the control was 25% on day 15 of storage and 75% on day 33 of storage, respectively.

Experimental study for application of the punch shear test to estimate adfreezing strength of frozen soil-structure interface

  • Park, Sangyeong;Hwang, Chaemin;Choi, Hangseok;Son, Youngjin;Ko, Tae Young
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.281-290
    • /
    • 2022
  • The direct shear test is commonly used to evaluate the shear behavior of frozen soil-structure interfaces under normal stress. However, failure criteria, such as the Mohr-Coulomb failure criterion, are needed to obtain the unconfined shear strength. Hence, the punch shear test, which is usually used to estimate the shear strength of rocks without confinement, was examined in this study to directly determine the adfreezing strength. It is measured as the shear strength of the frozen soil-structure interface under unconfined conditions. Different soils of silica sand, field sand, and field clay were prepared inside the steel and concrete ring structures. Soil and ring structures were frozen at the target temperature for more than 24 h. A punch shear test was then conducted. The test results show that the adfreezing strength increased with a decrease in the target temperature and increase in the initial water content, owing to the increase in ice content. The adfreezing strength of field clay was the smallest when compared with the other soil specimens because of the large amount of unfrozen water content. The field sand with the larger normalized roughness showed greater adfreezing strength than the silica sand with a lower normalized roughness. From the experiment and analysis, the applicability of the punch shear test was examined to measure the adfreezing strength of the frozen soil-structure interface. To find a proper sample dimension, supplementary experiments or numerical analysis will be needed in further research.

Freezing Behaviors of Frozen Foods Determined by $^1H$ NMR and DSC

  • Lee, Su-Yong;Moon, Se-Hun;Shim, Jae-Yong;Kim, Yong-Ro
    • Food Science and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.102-105
    • /
    • 2008
  • The freezing patterns of commercial frozen foods were characterized by using proton nuclear magnetic resonance ($^1H$ NMR) relaxometry and differential scanning calorimetry (DSC). The liquid-like components like unfrozen water were investigated as a function of temperature (10 to $-40^{\circ}C$) and then compared with the unfrozen water content measured by DSC. The formation of ice crystals and the reduction of water in the foods during freezing were readily observed as a loss of the NMR signal intensity. The proton NMR relaxation measurement showed that the decreasing pattern of the liquid-like components varied depending on the samples even though they exhibited the same onset temperature of ice formation at around $0^{\circ}C$. When compared with the unfrozen water content obtained by the DSC, the NMR and DSC results could be closely correlated at the temperature above $-20^{\circ}C$. However, the distinct divergence in the values between 2 methods was observed with further decreasing temperatures probably due to the solid glass formation which was not detected by DSC.

The Strength of Frozen Soil (동결된 흙의 강도에 관한 실험적 연구)

  • 주마서
    • Water for future
    • /
    • v.6 no.1
    • /
    • pp.13-18
    • /
    • 1973
  • If the temperature of free water drops below the freezing point the water turns into ice and its volume increases. Analyzing of the results in test, it is hoped that these is broadly used in engineering plan. The compressive strength of frozen soils and the unconfined compressive strength of the ice. The creep strength depends on factors including creep ratio, time, strain and temperature. For a linear decreases in temperature, strength predicts an exponential increasing. The relationships between dry unit weight and compressive strength, water content and freezing with compacted soil samples, have been analyzed to understand the strength of frozen soil. Therefore, it is thankful that the results of analsis shall find useful application as a framework for generalizing experimental information as well as a basis for solving various frozen soil mechanics problems.

  • PDF