DOI QR코드

DOI QR Code

Impacts of Aerosol Loading on Surface Precipitation from Deep Convective Systems over North Central Mongolia

  • Lkhamjav, Jambajamts (School of Earth and Environmental Sciences, Seoul National University) ;
  • Lee, Hyunho (School of Earth and Environmental Sciences, Seoul National University) ;
  • Jeon, Ye-Lim (School of Earth and Environmental Sciences, Seoul National University) ;
  • Seo, Jaemyeong Mango (School of Earth and Environmental Sciences, Seoul National University) ;
  • Baik, Jong-Jin (School of Earth and Environmental Sciences, Seoul National University)
  • Received : 2017.10.20
  • Accepted : 2018.03.14
  • Published : 2018.11.30

Abstract

The impacts of aerosol loading on surface precipitation from mid-latitude deep convective systems are examined using a bin microphysics model. For this, a precipitation case over north central Mongolia, which is a high-altitude inland region, on 21 August 2014 is simulated with aerosol number concentrations of 150, 300, 600, 1200, 2400, and $4800cm^{-3}$. The surface precipitation amount slightly decreases with increasing aerosol number concentration in the range of $150-600cm^{-3}$, while it notably increases in the range of $600-4800cm^{-3}$ (22% increase with eightfold aerosol loading). We attempt to explain why the surface precipitation amount increases with increasing aerosol number concentration in the range of $600-4800cm^{-3}$. A higher aerosol number concentration results in more drops of small sizes. More drops of small sizes grow through condensation while being transported upward and some of them freeze, thus increasing the mass content of ice crystals. The increased ice crystal mass content leads to an increase in the mass content of small-sized snow particles largely through deposition, and the increased mass content of small-sized snow particles leads to an increase in the mass content of large-sized snow particles largely through riming. In addition, more drops of small sizes increase the mass content of supercooled drops, which also leads to an increase in the mass content of large-sized snow particles through riming. The increased mass content of large-sized snow particles resulting from these pathways contributes to a larger surface precipitation amount through melting and collision-coalescence.

Keywords

Acknowledgement

Supported by : Korea Meteorological Administration

References

  1. Alizadeh-Choobari, O., Gharaylou, M.: Aerosol impacts on radiative and microphysical properties of clouds and precipitation formation. Atmos. Res. 185, 53-64 (2017) https://doi.org/10.1016/j.atmosres.2016.10.021
  2. Chen, F., Dudhia, J.: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon. Weather Rev. 129, 569-585 (2001) https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
  3. Cheng, C.T., Wang, W.C., Chen, J.P.: A modelling study of aerosol impacts on cloud microphysics and radiative properties. Quart. J. Roy. Meteor. Soc. 133, 283-297 (2007) https://doi.org/10.1002/qj.25
  4. Choi, I.-J., Iguchi, T., Kim, S.-W., Nakajima, T., Yoon, S.-C.: The effect of aerosol representation on cloud microphysical properties in Northeast Asia. Meteor. Atmos. Phys. 123, 181-194 (2014) https://doi.org/10.1007/s00703-013-0288-y
  5. Clavner, M., Cotton,W. R., van den Heever, S.C., Saleeby, S.M., Pierce, J.R.: The response of a simulated mesoscale convective system to increased aerosol pollution: Part I: precipitation intensity, distribution, and efficiency. Atmos. Res. 199, 193-208 (2017)
  6. Dagan, G., Koren, I., Altaratz, O., Heiblum, R.H.: Time-dependent, nonmonotonic response of warm convective cloud fields to changes in aerosol loading. Atmos. Chem. Phys. 17, 7435-7444 (2017) https://doi.org/10.5194/acp-17-7435-2017
  7. Dee, D.P., Coauthors: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc. 137, 553-597 (2011) https://doi.org/10.1002/qj.828
  8. Fan, J.W., Leung, L.R., Li, Z.Q., Morrison, H., Chen, H.B., Zhou, Y.Q., Qian, Y., Wang, Y.: Aerosol impacts on clouds and precipitation in eastern China: results from bin and bulk microphysics. J. Geophys. Res. 117, D00K36 (2012)
  9. Fan, J.W., Wang, Y., Rosenfeld, D., Liu, X.: Review of aerosol-cloud interactions: mechanisms, significance, and challenges. J. Atmos. Sci. 73, 4221-4252 (2016) https://doi.org/10.1175/JAS-D-16-0037.1
  10. Gayatri, K., Patade, S., Prabhakaran, T.: Aerosol-cloud interaction in deep convective clouds over the Indian peninsula using spectral (bin) microphysics. J. Atmos. Sci. 74, 3145-3166 (2017) https://doi.org/10.1175/JAS-D-17-0034.1
  11. Han, J.-Y., Baik, J.-J., Khain, A.P.: A numerical study of urban aerosol impacts on clouds and precipitation. J. Atmos. Sci. 69, 504-520 (2012) https://doi.org/10.1175/JAS-D-11-071.1
  12. Hong, S.-Y., Noh, Y., Dudhia, J.: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 134, 2318-2341 (2006) https://doi.org/10.1175/MWR3199.1
  13. Houze, R. A., Jr.: Cloud dynamics, 2nd ed. Academic Press, pp 432. (2014)
  14. Iacono, M.J., Delamere, J.S., Mlawer, E.J., Shephard, M.W., Clough, S.A., Collins, W.D.: Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J. Geophys. Res. 113, D13103 (2008) https://doi.org/10.1029/2008JD009944
  15. Igel, A.L., van den Heever, S.C., Naud, C.M., Saleeby, S.M., Posselt, D.J.: Sensitivity of warm-frontal processes to cloud-nucleating aerosol concentrations. J. Atmos. Sci. 70, 1768-1783 (2013) https://doi.org/10.1175/JAS-D-12-0170.1
  16. Iguchi, T., Nakajima, T., Khain, A.P., Saito, K., Takemura, T., Okamoto, H., Nishizawa, T., Tao, W.-K.: Evaluation of cloud microphysics in JMA-NHM simulations using bin or bulk microphysical schemes through comparison with cloud radar observations. J. Atmos. Sci. 69, 2566-2586 (2012) https://doi.org/10.1175/JAS-D-11-0213.1
  17. Ilotoviz, E., Khain, A.P., Benmoshe, N., Phillips, V.T., Ryzhkov, A.V.: Effect of aerosols on freezing drops, hail, and precipitation in a midlatitude storm. J. Atmos. Sci. 73, 109-144 (2016) https://doi.org/10.1175/JAS-D-14-0155.1
  18. Jiang, Q., Wang, S.: Aerosol replenishment and cloud morphology: a VOCALS example. J. Atmos. Sci. 71, 300-311 (2014) https://doi.org/10.1175/JAS-D-13-0128.1
  19. Kain, J.S.: The Kain-Fritsch convective parameterization: an update. J. Appl. Meteorol. 43, 170-181 (2004) https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
  20. Khain, A.: Notes on state-of-the-art investigations of aerosol effects on precipitation: a critical review. Environ. Res. Lett. 4, 015004 (2009) https://doi.org/10.1088/1748-9326/4/1/015004
  21. Khain, A., Coauthors: Representation of microphysical processes in cloud-resolving models: spectral (bin) microphysics versus bulk parameterization. Rev. Geophys. 53, 247-322 (2015) https://doi.org/10.1002/2014RG000468
  22. Khain, A., Pokrovsky, A., Sednev, I.: Some effects of cloud aerosol interaction on cloud microphysics structure and precipitation formation: numerical experiments with a spectral microphysics cloud ensemble model. Atmos. Res. 52, 195-220 (1999) https://doi.org/10.1016/S0169-8095(99)00027-7
  23. Khain, A., Ovtchinnikov, M., Pinsky, M., Pokrovsky, A., Krugliak, H.: Notes on the state-of-the-art numerical modeling of cloud microphysics. Atmos. Res. 55, 159-224 (2000) https://doi.org/10.1016/S0169-8095(00)00064-8
  24. Khain, A., Rosenfeld, D., Pokrovsky, A.:Aerosol impact on the dynamics and microphysics of deep convective clouds. Quart. J. Roy. Meteor. Soc. 131, 2639-2663 (2005) https://doi.org/10.1256/qj.04.62
  25. Khain, A., Rosenfeld, D., Pokrovsky, A., Blahak, U., Ryzhkov, A.: The role of CCN in precipitation and hail in a mid-latitude storm as seen in simulations using a spectral (bin) microphysics model in a 2D dynamic frame. Atmos. Res. 99, 129-146 (2011) https://doi.org/10.1016/j.atmosres.2010.09.015
  26. Kuba, N., Fujiyoshi, Y.: Development of a cloud microphysical model and parameterizations to describe the effect of CCN on warm cloud. Atmos. Chem. Phys. 6, 2793-2810 (2006) https://doi.org/10.5194/acp-6-2793-2006
  27. Lee, H., Baik, J.-J.: Effects of turbulence-induced collision enhancement on heavy precipitation: the 21 September 2010 case over the Korean peninsula. J. Geophys. Res. 121, 12319-12342 (2016)
  28. Lee, H., Baik, J.-J., Han, J.-Y.: Effects of turbulence onmixed-phase deep convective clouds under different basic-state winds and aerosol concentrations. J. Geophys. Res. 119, 13506-13525 (2014)
  29. Lee, S.S., Donner, L.J., Phillips, V.T.,Ming, Y.: The dependence of aerosol effects on clouds and precipitation on cloud-systemorganization, shear and stability. J. Geophys. Res. 113, D16202 (2008) https://doi.org/10.1029/2007JD009224
  30. Li, G., Wang, Y., Zhang, R.: Implementation of a two-moment bulk microphysics scheme to the WRF model to investigate aerosolcloud interaction. J. Geophys. Res. 113, D15211 (2008) https://doi.org/10.1029/2007JD009361
  31. Lkhamjav, J., Lee, H., Jeon, Y.-L., Baik, J.-J.: Examination of an improved quasi-stochastic model for the collisional growth of drops. J. Geophys. Res. 122, 1713-1724 (2017a)
  32. Lkhamjav, J., Jeon, Y.-L., Lee, H., Baik, J.-J., Seo, J.M: Evaluation of the improved quasi-stochastic collection model through precipitation prediction over north central Mongolia. J. Geophys. Res. 122, 13,404-13,419 (2017b)
  33. Lynn, B.H., Khain, A., Dudhia, J., Rosenfeld, D., Pokrovsky, A., Seifert, A.: Spectral (bin) microphysics coupled with a mesoscale model (MM5). Part I: model description and first results. Mon. Weather Rev. 133, 44-58 (2005) https://doi.org/10.1175/MWR-2840.1
  34. O'Halloran, T.L., Fuentes, J.D., Tao,W.K., Li, X.: Sensitivity of convection to observed variation in aerosol size distributions and composition at a rural site in the southeastern United States. J. Atmos. Chem. 72, 441-454 (2015) https://doi.org/10.1007/s10874-015-9300-x
  35. Rosenfeld, D., Lohmann, U., Raga, G.B., O'Dowd, C.D., Kulmala, M., Fuzzi, S., Reissell, A., Andreae, M.O.: Flood or drought: how do aerosols affect precipitation? Science. 321, 1309-1313 (2008) https://doi.org/10.1126/science.1160606
  36. Sarangi, C., Tripathi, S.N., Kanawade, V.P., Koren, I., Pai, D.S.: Investigation of the aerosol-cloud-rainfall association over the Indian summer monsoon region. Atmos. Chem. Phys. 17, 5185-5204 (2017) https://doi.org/10.5194/acp-17-5185-2017
  37. Tao, W.-K., Li, X.: The relationship between latent heating, vertical velocity, and precipitation processes: the impact of aerosols on precipitation in organized deep convective systems. J. Geophys. Res. 121, 6299-6320 (2016)
  38. Tao, W.-K., Li, X., Khain, A., Matsui, T., Lang, S., Simpson, J.: Role of atmospheric aerosol concentration on deep convective precipitation: cloud-resolving model simulations. J. Geophys. Res. 112, D24S18 (2007)
  39. Tao, W.-K., Chen, J.-P., Li, Z., Wang, C., Zhang, C.: Impact of aerosols on convective clouds and precipitation. Rev. Geophys. 50, RG2001 (2012)
  40. Twomey, S.: Influence of pollution on shortwave albedo of clouds. J. Atmos. Sci. 34, 1149-1152 (1977) https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2
  41. van den Heever, S.C., Carrio, G.G., Cotton, W.R., DeMott, P.J., Prenni, A.J.: Impacts of nucleating aerosol on Florida storms. Part I: mesoscale simulations. J. Atmos. Sci. 63, 1752-1775 (2006) https://doi.org/10.1175/JAS3713.1
  42. Wang, C.: A modeling study of the response of tropical deep convection to the increase of cloud condensation nuclei concentration: 1. dynamics and microphysics. J. Geophys. Res. 110, D21211 (2005) https://doi.org/10.1029/2004JD005720
  43. Xiao, H., Yin, Y., Jin, L., Chen, Q., Chen, J.: Simulation of the effects of aerosol on mixed-phase orographic clouds using the WRF model with detailed bin microphysics scheme. J. Geophys. Res. 120, 8345-8358 (2015)
  44. Xue, H., Feingold, G.: Large-eddy simulations of trade wind cumuli: investigation of aerosol indirect effects. J. Atmos. Sci. 63, 1605-1622 (2006) https://doi.org/10.1175/JAS3706.1
  45. Xue, L., Teller, A., Rasmussen, R., Geresdi, I., Pan, Z., Liu, X.: Effects of aerosol solubility and regeneration on mixed-phase orographic clouds and precipitation. J. Atmos. Sci. 69, 1994-2010 (2012) https://doi.org/10.1175/JAS-D-11-098.1
  46. Zhou, X., Bei, N., Liu, H., Cao, J., Xing, L., Lei, W., Molina, L.T., Li, G.: Aerosol effects on the development of cumulus clouds over the Tibetan Plateau. Atmos. Chem. Phys. 17, 7423-7434 (2017) https://doi.org/10.5194/acp-17-7423-2017

Cited by

  1. Aerosol Indirect Effects on the Predicted Precipitation in a Global Weather Forecasting Model vol.10, pp.7, 2018, https://doi.org/10.3390/atmos10070392