DOI QR코드

DOI QR Code

Variation of Biogenic Opal Production on the Conrad Rise in the Indian Sector of the Southern Ocean since the Last Glacial Period

남극해 인도양 해역에 위치한 콘래드 해령 지역의 마지막 빙하기 이후 생물기원 오팔 생산의 변화

  • JuYeon Yang (Division of Earth and Environmental System, Pusan National University) ;
  • Minoru Ikehara (Center of Advanced Marine Core Research, Kochi University) ;
  • Hyuk Choi (Division of Earth and Environmental System, Pusan National University) ;
  • Boo-Keun Khim (Department of Oceanography and Marine Research Institute, Pusan National University)
  • 양주연 (부산대학교 자연과학대학 지구환경시스템학부) ;
  • ;
  • 최혁 (부산대학교 자연과학대학 지구환경시스템학부) ;
  • 김부근 (부산대학교 해양학과 및 해양연구소)
  • Received : 2023.03.29
  • Accepted : 2023.06.12
  • Published : 2023.09.30

Abstract

Biological pump processes generated by diatom production in the surface water of the Southern Ocean play an important role in exchanging CO2 gas between the atmosphere and ocean. In this study, the biogenic opal content of the sediments was measured to elucidate the variation in the primary production of diatoms in the surface water of the Southern Ocean since the last glacial period. A piston core (COR-1bPC) was collected from the Conrad Rise, which is located in the Indian sector of the Southern Ocean. The sediments were mainly composed of siliceous ooze, and sediment lightness increased and magnetic susceptibility decreased in an upward direction. The biogenic opal content was low (38.9%) during the last glacial period and high (73.4%) during the Holocene, showing a similar variation to that of Antarctic ice core ΔT and CO2 concentration. In addition, the variation of biogenic opal content in core COR-1bPC is consistent with previous results reported in the Antarctic Zone, south of the Antarctic Polar Front, in the Southern Ocean. The glacial-interglacial biogenic opal production was influenced by the extent of sea ice coverage and degree of water column stability. During the last glacial period, the diatom production was reduced due to the penetration of light being limited in the euphotic zone by the extended sea ice coverage caused by the lowered seawater temperature. In addition, the formation of a strong thermocline in more extensive areas of sea ice coverage led to stronger water column stability, resulting in reduced diatom production due to the reduction in the supply of nutrient-rich subsurface water caused by a decrease in upwelling intensity. Under such environmental circumstances, diatom productivity decreased in the Antarctic Zone during the last glacial period, but the biogenic opal content increased rapidly under warming conditions with the onset of deglaciation.

Keywords

Acknowledgement

논문을 심사하시고 훌륭한 조언을 해 주신 두 분의 심사위원들게 감사를 드립니다. 이 연구는 부산대학교 기본 연구지원사업(2년)에 의하여 수행되었습니다.

References

  1. Abelmann A, Gersonde R (1991) Biosiliceous particle flux in the Southern Ocean. Mar Chem 35(1-4):503-536 https://doi.org/10.1016/S0304-4203(09)90040-8
  2. Anders on RF, Ali S, Bradtmiller LI, Niels en SHH, Fleis her MQ, Anderson BE, Burckle LH (2009) Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2. Science 323(5920):1443-1448 https://doi.org/10.1126/science.1167441
  3. Anderson RF, Chase Z, Fleisher MQ, Sachs J (2002) The Southern Ocean's biological pump during the last glacial maximum. Deep-Sea Res Pt II 49(9-10):1909-1938 https://doi.org/10.1016/S0967-0645(02)00018-8
  4. Bard E (1988) Correction of accelerator mass spectrometry 14C ages measured in planktonic foraminifera: paleoceanographic implications. Paleoceanography 3(6):635-645 https://doi.org/10.1029/PA003i006p00635
  5. Bareille G, Labracherie M, Bertrand P, Labeyrie L, Lavaux G, Dignan M (1998) Glacial-interglacial changes in the accumulation rates of major biogenic components in Southern Indian Ocean sediments. J Marine Syst 17(1-4):527-539 https://doi.org/10.1016/S0924-7963(98)00062-1
  6. Batchelor CL, Margold M, Krapp M, Murton DK, Dalton AS, Gibbard PL, Stokes CR, Murton JB, Manica A (2019) The configuration of Northern Hemisphere ice sheets through the Quaternary. Nat Comm 10(1):3713
  7. Belkin IM, Gordon AL (1996) Southern Ocean fronts from the Greenwich meridian to Tasmania. J Geophys ResOceans 101(C2):3675-3696
  8. Benz V, Esper O, Gersonde R, Lamy F, Tiedemann R (2016) Last Glacial Maximum sea surface temperature and sea-ice extent in the Pacific sector of the Southern Ocean. Quaternary Sci Rev 146:216-237 https://doi.org/10.1016/j.quascirev.2016.06.006
  9. Bereiter B, Eggleston S, Schmitt J, Nehrbass-Ahles C, Stocker TF, Fischer H, Kipfstuhl S, Chappellaz J (2015) Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present. Geophys Res Lett 42(2):542-549 https://doi.org/10.1002/2014GL061957
  10. Berger A (1988) Milankovitch theory and climate. Rev Geophys 26(4):624-657 https://doi.org/10.1029/RG026i004p00624
  11. Boyd PW, Watson AJ, Law CS, Abraham ER, Trull T, Murdoch R, Bakker DCE, Bowie AR, Buesseler KO, Chang H, Charette M, Croot P, Downing K, Frew R, Gall M, Hadfield M, Hall J, Harvey M, Jameson G, LaRoche J, Liddicoat M, Maldonado MT, McKay RM, Nodder S, Pickmere S, Pridmore R, Rintoul S, Safi K, Sutton P, Strzepek R, Tanneberger K, Turner S, Waite A, Zeldis J (2000) A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature 407(6805):695-702 https://doi.org/10.1038/35037500
  12. Bradtmiller LI, Anderson RF, Fleisher MQ, Burckle LH (2009) Comparing glacial and Holocene opal fluxes in the Pacific sector of the Southern Ocean. Paleoceanography 24(2):PA2214
  13. Brzezinski MA, Pride CJ, Franck VM, Sigman DM, Sarmiento JL, Matsumoto K, Gruber N, Rau GH, Coale KH (2002) A switch from Si(OH)4 to NO3- depletion in the glacial Southern Ocean. Geophys Rese Lett 29(12):5-1-5-4 https://doi.org/10.1029/2001GL014349
  14. Burckle LH, Cirilli J (1987) Origin of diatom ooze belt in the Southern Ocean; implications for late Quatenary paleoceanography. Micropaleontology 33(1):82-86
  15. Chadwick M, Allen CS, Sime LC, Hillenbrand CD (2020) Analysing the timing of peak warming and minimum winter sea-ice extent in the Southern Ocean during MIS 5e. Quaternary Sci Rev 229:106134
  16. Charles CD, Froelich PN, Zibello MA, Mortlock RA, Morley JJ (1991) Biogenic opal in Southern Ocean sediments over the last 450,000 years: implications for surface water chemistry and circulation. Paleoceanography 6(6):697- 728 https://doi.org/10.1029/91PA02477
  17. Chase Z, Anderson RF, Fleisher MQ, Kubik PW (2003) Accumulation of biogenic and lithogenic material in the Pacific sector of the Southern Ocean during the past 40,000 years. Deep-Sea Res Pt II 50(3-4):799-832 https://doi.org/10.1016/S0967-0645(02)00595-7
  18. Chase Z, Kohfeld KE, Matsumoto K (2015) Controls on biogenic silica burial in the Southern Ocean. Global Biogeochem Cy 29(10):1599-1616 https://doi.org/10.1002/2015GB005186
  19. Civel-Mazens M, Crosta X, Cortese G, Michel E, Mazaud A, Ther O, Ikehara M, Itaki T (2021) Antarctic Polar Front migrations in the Kerguelen Plateau region, Southern Ocean, over the past 360 kyrs. Global Planet Change 202:103526
  20. Cooke DW, Hays JD (1982) Estimates of Antarctic Ocean seasonal sea-ice cover during glacial intervals. Antarct Geosci 131:1017-1025
  21. Cortese G, Gersonde R, Hillenbrand CD, Kuhn G (2004) Opal sedimentation shifts in the World Ocean over the last 15 Myr. Earth Planet Sci Lett 224(3-4):509-527 https://doi.org/10.1016/j.epsl.2004.05.035
  22. Crosta X, Romero O, Armand LK, Pichon JJ (2005) The biogeography of major diatom taxa in Southern Ocean sediments: 2. Open ocean related species. Palaeogeogr Palaeocl 223(1-2):66-92 https://doi.org/10.1016/j.palaeo.2005.03.028
  23. Crosta X, Shemesh A, Salvignac ME, Gildor H, Yam R (2002) Late Quaternary variations of elemental ratios (C/Si and N/Si) in diatom-bound organic matter from the Southern Ocean. Deep-Sea Res Pt II 49(9-10):1939-1952 https://doi.org/10.1016/S0967-0645(02)00019-X
  24. Crosta X, Sturm A, Armand L, Pichon JJ (2004) Late Quaternary sea ice history in the Indian sector of the Southern Ocean as recorded by diatom assemblages. Mar Micropaleontol 50(3-4):209-223 https://doi.org/10.1016/S0377-8398(03)00072-0
  25. De La Rocha CL, Brzezinski MA, DeNiro MJ, Shemesh A (1998) Silicon-isotope composition of diatoms as an indicator of past oceanic change. Nature 395(6703):680-683 https://doi.org/10.1038/27174
  26. DeMaster DJ (1981) The supply and accumulation of silica in the marine environment. Geochim Cosmochim Ac 45(10):1715-1732 https://doi.org/10.1016/0016-7037(81)90006-5
  27. Dezileau L, Reyss JL, Lemoine F (2003) Late Quaternary changes in biogenic opal fluxes in the Southern Indian Ocean. Mar Geol 202(3-4):143-158 https://doi.org/10.1016/S0025-3227(03)00283-4
  28. Diekmann B (2007) Sedimentary patterns in the late Quaternary Southern Ocean. Deep-Sea Res Pt II 54(21-22):2350-2366 https://doi.org/10.1016/j.dsr2.2007.07.025
  29. Durgadoo JV, Lutjeharms JRE, Biastoch A, Ansorge IJ (2008) The Conrad Rise as an obstruction to the Antarctic Circumpolar Current. Geophy Res Lett 35(20):L20606
  30. Ebert EE, Schramm JL, Curry JA (1995) Disposition of solar radiation in sea ice and the upper ocean. J Geophys ResOceans 100(C8):15965-15975 https://doi.org/10.1029/95JC01672
  31. Esper O, Gersonde R (2014) New tools for the reconstruction of Pleistocene Antarctic sea ice. Palaeogeogr Palaeocl 399:260-283 https://doi.org/10.1016/j.palaeo.2014.01.019
  32. Ferrari R, Jans en MF, Adkins JF, Burke A, Stewart AL Thompson AF (2014) Antarctic sea ice control on ocean circulation in present and glacial climates. P Natl Acad Sci USA 111(24):8753-8758 https://doi.org/10.1073/pnas.1323922111
  33. Francois R, Altabet MA, Yu EF, Sigman DM, Bacon MP, Frank M, Bohrmann G, Bareille G, Labeyrie LD (1997) Contribution of Southern Ocean surface-water stratification to low atmospheric CO2 concentrations during the last glacial period. Nature 389(6654):929-935 https://doi.org/10.1038/40073
  34. Frank M, Gersonde R, Loeff MR, Bohrmann G, Nurnberg CC, Kubik PW, Suter M, Mangini A (2000) Similar glacial and interglacial export bioproductivity in the Atlantic sector of the Southern Ocean: multiproxy evidence and implications for glacial atmospheric CO2. Paleoceanography 15(6):642-658 https://doi.org/10.1029/2000PA000497
  35. Gersonde R, Crosta X, Abelmann A, Armand L (2005) Seasurface temperature and sea ice distribution of the Southern Ocean at the EPILOG Last Glacial Maximum-a circum - Antarctic view based on siliceous microfossil records. Quaternary Sci Rev 24(7-9):869-896 https://doi.org/10.1016/j.quascirev.2004.07.015
  36. Gersonde R, Wefer G (1987) Sedimentation of biogenic siliceous particles in Antarctic waters from the Atlantic sector. Mar Micropaleontol 11(4):311-332 https://doi.org/10.1016/0377-8398(87)90004-1
  37. Ghadi P, Nair A, Cros ta X, Mohan R, Manoj MC, Meloth T (2020) Antarctic sea-ice and palaeoproductivity variation over the last 156,000 years in the Indian sector of Southern Ocean. Mar Micropaleontol 160:101894
  38. Gordon AL (1971) Antarctic polar front zone. Antarctic Oceanol 15:205-221 https://doi.org/10.1029/AR015p0205
  39. Gruber N, Gloor M, Mikaloff Fletcher SE, Doney SC, Dutkiewicz S, Follows MJ, Gerber M, Jacobson AR, Joos F, Lindsay K, Menemenlis D, Mouchet A, Muller SA, Sarmiento JL, Takahashi T (2009) Oceanic sources, sinks, and transport of atmospheric CO2. Global Biogeochem Cy 23(1):GB1005
  40. Henley SF, Cavan EL, Fawcett SE, Kerr R, Monteiro T, Sherrell RM, Bowie AR, Boyd PW, Barnes DKA, Schloss IR, Marshall T, Flynn R, Smith S (2020) Changing biogeochemistry of the Southern Ocean and its ecosystem implications. Front Mar Sci 7:581
  41. Hillenbrand CD, Cortese G (2006) Polar stratification: a critical view from the Southern Ocean. Palaeogeogr Palaeocl 242(3-4):240-252
  42. Hobbs WR, Massom R, Stammerjohn S, Reid P, Williams G, Meier W (2016) A review of recent changes in Southern Ocean sea ice, their drivers and forcings. Global Planet Change 143:228-250 https://doi.org/10.1016/j.gloplacha.2016.06.008
  43. Honjo S (2004) Particle export and the biological pump in the Southern Ocean. Antarc Sci 16(4):501-516 https://doi.org/10.1017/S0954102004002287
  44. Jaccard SL, Hayes CT, Martinez-Garcia A, Hodell DA, Anderson RF, Sigman DM, Haug GH (2013) Two modes of change in Southern Ocean productivity over the past million years. Science 339(6126):1419-1423 https://doi.org/10.1126/science.1227545
  45. Jouzel J, Masson-Delmotte V, Cattani O, Dreyfus G, Falourd S, Hoffmann G, Minster B, Nouet J, Barnola JM, Chappellaz J, Fischer H, Gallet JC, Johnsen S, Leuenberger M, Loulergue L, Luethi D, Oerter H, Parrenin F, Raisbeck G, Raynaud D, Schilt A, Schwander J, Selmo E, Souchez R, Spahni R, Stauffer B, Steffensen JP, Stenni B, Stocker TF, Tison JL, Werner M, Wolff EW (2007) Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317(5839):793-796 https://doi.org/10.1126/science.1141038
  46. Kaiser EA, Billups K, Bradtmiller L (2021) A 1 million year record of biogenic silica in the Indian Ocean sector of the Southern Ocean: regional versus global forcing of primary productivity. Paleoceanography and Paleoclimatology 36(3):e2020PA004033
  47. Kohfeld KE, Quere CL, Harrison SP, Anderson RF (2005) Role of marine biology in glacial-interglacial CO2 cycles. Science 308(5718):74-78 https://doi.org/10.1126/science.1105375
  48. Kohler P, Fischer H, Munhoven G, Zeebe RE (2005) Quantitative interpretation of atmospheric carbon records over the last glacial termination. Global Biogeochem Cy 19(4): GB4020
  49. Kumar N, Anderson RF, Mortlock RA, Froelich PN, Kubik P, Dittrich-Hannen B, Suter M (1995) Increased biological productivity and export production in the glacial Southern Ocean. Nature 378(6558):675-680 https://doi.org/10.1038/378675a0
  50. Kumar N, Gwiazda R, Anderson RF, Froelich PN (1993) 231Pa/230Th ratios in sediments as a proxy for past changes in Southern Ocean productivity. Nature 362(6415):45-48 https://doi.org/10.1038/362045a0
  51. Latimer JC (2004) Paleo-export production and terrigenous sedimentation in the Southern Ocean. Ph. D. Thesis, Indiana University, 29 p
  52. Lazarus D, Caulet JP (1993) Cenozoic Southern Ocean reconstructions from sedimentologic, radiolarian, and other microfossil data. In: Kennett P, Warnke DA (eds) The Antarctic Paleoenvironment: a perspective on global change. American Geophysical Union, pp 145-174
  53. Lynch-Stieglitz J, Ito T, Michel E (2016) Antarctic density stratification and the strength of the circumpolar current during the Last Glacial Maximum. Paleoceanography 31 (5):539-552 https://doi.org/10.1002/2015PA002915
  54. Manoj MC, Thamban M (2015) Shifting frontal regimes and its influence on bioproductivity variations during the Late Quaternary in the Indian sector of Southern Ocean. Deep-Sea Res Pt II 118:261-274 https://doi.org/10.1016/j.dsr2.2015.03.011
  55. Marinov I, Gnanadesikan A, Toggweiler JR, Sarmiento JL (2006) The southern ocean biogeochemical divide. Nature 441(7096):964-967 https://doi.org/10.1038/nature04883
  56. Marshall J, Speer K (2012) Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat Geosci 5(3):171-180 https://doi.org/10.1038/ngeo1391
  57. Martin JH (1990) Glacial-interglacial CO2 change: the iron hypothesis. Paleoceanography 5(1):1-13 https://doi.org/10.1029/PA005i001p00001
  58. Martinez-Garcia A, Rosell-Mele A, Geibert W, Gersonde R, Masque P, Gaspari, V, Barbante C (2009) Links between iron supply, marine productivity, sea surface temperature, and CO2 over the last 1.1 Ma. Paleoceanography 24(1): PA1207
  59. Martinez-Garcia A, Rosell-Mele A, Jaccard SL, Geibert W, Sigman DM, Haug GH (2011) Southern Ocean dustclimate coupling over the past four million years. Nature 476(7360):312-315 https://doi.org/10.1038/nature10310
  60. Moore JK, Abbott MR, Richman JG, Nelson DM (2000) The Southern Ocean at the last glacial maximum: a strong sink for atmospheric carbon dioxide. Global Biogeochem Cy 14(1):455-475 https://doi.org/10.1029/1999GB900051
  61. Mortlock RA, Charles CD, Froelich PN, Zibello MA, Saltzman J, Hays JD, Burckle LH (1991) Evidence for lower productivity in the Antarctic Ocean during the last glaciation. Nature 351(6323):220-223 https://doi.org/10.1038/351220a0
  62. Mortlock RA, Froelich PN (1989) A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep-Sea Res 36(9):1415-1426
  63. Niels en SH, Hodell DA, Kamenov G, Guilders on T, Perfit MR (2007) Origin and significance of ice-rafted detritus in the Atlantic sector of the Southern Ocean. Geochem Geophy Geosy 8(12):C001618
  64. Oiwane H, Ikehara M, Suganuma Y, Miura H, Nakamura Y, Sato T, Nogi Y, Yamane M, Yokoyama Y (2014) Sediment waves on the Conrad Rise, Southern Indian Ocean: implications for the migration history of the Antarctic Circumpolar Current. Mar Geol 348:27-36 https://doi.org/10.1016/j.margeo.2013.10.008
  65. Orme LC, Cros ta X, Miettinen A, Divine DV, Hus um K, Isaksson E, Wacker L, Mohan R, Ther O, Ikehara M (2020) Sea surface temperature in the Indian sector of the Southern Ocean over the Late Glacial and Holocene. Clim Past 16(4):1451-1467 https://doi.org/10.5194/cp-16-1451-2020
  66. Ors i AH, Whitworth T, Nowlin Jr WD (1995) On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res Pt I 42(5):641-673 https://doi.org/10.1016/0967-0637(95)00021-W
  67. Pahnke K, Sachs JP (2006) Sea surface temperatures of southern midlatitudes 0-160 kyr BP. Paleoceanography 21(2):PA2003
  68. Paillard D (2001) Glacial cycles: toward a new paradigm. Rev Geophys 39(3):325-346 https://doi.org/10.1029/2000RG000091
  69. Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, PEpin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399(6735):429-436 https://doi.org/10.1038/20859
  70. Petrou K, Kranz SA, Trimborn S, Hassler CS, Ameijeiras SB, Sackett O, Davidson AT (2016) Southern Ocean phytoplankton physiology in a changing climate. J Plant Physiol 203:135-150 https://doi.org/10.1016/j.jplph.2016.05.004
  71. Pickering KT, Hiscott RN (2015) Deep marine systems: processes, deposits, environments, tectonics and sedimentation. John Wiley & Sons, Hoboken, USA, 485 p
  72. Pollard RT, Lucas MI, Read JF (2002) Physical controls on biogeochemical zonation in the Southern Ocean. DeepSea Res Pt II 49(16):3289-3305 https://doi.org/10.1016/S0967-0645(02)00084-X
  73. Ragueneau O, Treguer P, Leynaert A, Anderson RF, Brzezins ki MA, DeMas ter DJ, Dugdale RC, Dymond J, Fis her G, Francois R, Heinze C, Maier-Reimer E, MartinJezequel V, Nelson DW, Queguiner B (2000) A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy. Global Planet Change 26(4):317-365 https://doi.org/10.1016/S0921-8181(00)00052-7
  74. Rotzien JR, Hernandez-Molina FJ, Fonnesu M, Thieblemont A (2022) Deepwater sedimentation units. In Deepwater Sedimentary Systems. Elsevier, Amsterdam, 203 p
  75. Shukla SK, Crosta X, Cortese G, Nayak GN (2013) Climate mediated size variability of diatom Fragilariopsis kerguelensis in the Southern Ocean. Quaternary Sci Rev 69:49-58 https://doi.org/10.1016/j.quascirev.2013.03.005
  76. Siddall M, Rohling EJ, Almogi-Labin A, Hemleben C, Meischner D, Schmelzer I, Smeed DA (2003) Sea-level fluctuations during the last glacial cycle. Nature 423(6942):853-858 https://doi.org/10.1038/nature01690
  77. Sigman DM, Altabet MA, Francois R, McCorkle DC, Gaillard JF (1999) The isotopic composition of diatom-bound nitrogen in Southern Ocean sediments. Paleoceanography, 14(2):118-134 https://doi.org/10.1029/1998PA900018
  78. Sigman DM, Boyle EA (2000) Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407(6806):859-869
  79. Sigman DM, Jaccard SL, Haug GH (2004) Polar ocean stratification in a cold climate. Nature 428(6978):59-63 https://doi.org/10.1038/nature02357
  80. Sigmon DE, Nelson DM, Brzezinski MA (2002) The Si cycle in the Pacific sector of the Southern Ocean: seasonal diatom production in the surface layer and export to the deep sea. Deep-Sea Res Pt II 49(9-10):1747-1763 https://doi.org/10.1016/S0967-0645(02)00010-3
  81. Sprenk D, Weber ME, Kuhn G, Rosen P, Frank M, MolinaKescher M, Liebetrau V, Rohling HG (2013) Southern Ocean bioproductivity during the last glacial cycle-new detection method and decadal-scale insight from the Scotia Sea. In: Mabrey MJ, Barker PF, Barrett PJ, Bowman V, Davies B, Smellie JL, Tranter M (eds) Antarctic palaeoenvironments and earth-surface processes. Geological Society of London, pp 245-261
  82. Stephens BB, Keeling RF (2000) The influence of Antarctic sea ice on glacial-interglacial CO2 variations. Nature 404(6774):171-174
  83. Studer AS, Sigman DM, Martinez-Garcia A, Benz V, Winckler G, Kuhn G, Esper O, Lamy F, Jaccard SL, Wacker L, Oleynik S, Gersonde R, Haug GH (2015) Antarctic Zone nutrient conditions during the last two glacial cycles. Paleoceanography 30(7):845-862 https://doi.org/10.1002/2014PA002745
  84. Stuiver M, Reimer PJ (1993) Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35(1):215-230
  85. Tang Z, Shi X, Zhang X, Chen Z, Chen MT, Wang X, Wang H, Liu H, Lohmann G, Li P, Ge S, Huang Y (2016) Deglacial biogenic opal peaks revealing enhanced Southern Ocean upwelling during the last 513 ka. Quatern Int 425: 445-452 https://doi.org/10.1016/j.quaint.2016.09.020
  86. Thamban M, Naik SS, Mohan R, Rajakumar A, Basavaiah N, D'Souza W, Sarita Kerkar, Subramaniam MM, Sudhakar M, Pandey PC (2005) Changes in the source and transport mechanism of terrigenous input to the Indian sector of Southern Ocean during the late Quaternary and its palaeoceanographic implications. J Earth Syst Sci 114: 443-452 https://doi.org/10.1007/BF02702021
  87. Toggweiler JR, Russell JL, Carson SR (2006) Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages. Paleoceanography 21(2):PA2005
  88. Treguer P, Nelson DM, Van Bennekom AJ, DeMaster DJ, Leynaert A, Queguiner B (1995) The silica balance in the world ocean: a reestimate. Science 268(5209):375-379 https://doi.org/10.1126/science.268.5209.375
  89. Veres D, Bazin L, Landais A, Toye-Mahamadou-Kele H, Lemieux-Dudon B, Parrenin F, Martinerie P, Blayo E, Blunier T, Capron E, Chappellaz J, Rasmussen SO, Severi M, Svensson A, Vinther B, Wolff EW (2013) The Antarctic ice core chronology (AICC2012): an optimized multi-parameter and multi-site dating approach for the last 120 thousand years. Clim Past 9(4):1733-1748 https://doi.org/10.5194/cp-9-1733-2013
  90. Wefer G, Fischer G (1991) Annual primary production and export flux in the Southern Ocean from sediment trap data. Mar Chem 35(1-4):597-613 https://doi.org/10.1016/S0304-4203(09)90045-7
  91. Whitworth T, Nowlin Jr WD (1987) Water masses and currents of the Southern Ocean at the Greenwich Meridian. J Geophys Res-Oceans 92(C6):6462-6476 https://doi.org/10.1029/JC092iC06p06462
  92. Wilson EA, Ris er SC, Campbell EC, Wong AP (2019) Winter upper-ocean stability and ice-ocean feedbacks in the sea ice-covered Southern Ocean. J Phys Oceanogr 49(4):1099-1117 https://doi.org/10.1175/JPO-D-18-0184.1
  93. Wolff EW, Fischer H, Fundel F, Ruth U, Twarloh B, Littot GC, Mulvaney R, Rothlisberger R, de Angelis M, Boutron CF, Hansson M, Jonsell U, Hutterli MA, Lambert F, Kaufmann P, Stauffer B, Stocker TF, Steffensen JP, Bigler M, Siggaard-Andersen ML, Udisti R, Becagli S, Castellano E, Severi M, Wagenbach D, Barbante C, Gabrielli P, Gaspari V (2006) Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles. Nature 440(7083):491-496 https://doi.org/10.1038/nature04614
  94. Wu SY, Hou S (2017) Impact of icebergs on net primary productivity in the Southern Ocean. Cryosphere 11(2):707-722
  95. Zwally HJ, Comiso JC, Parkinson CL, Cavalieri DJ, Gloersen P (2002) Variability of Antarctic sea ice 1979-1998. J Geophys Res-Oceans 107(C5):9