Given a complex submanifoldM of the projective space $\mathbb{P}$(T), the hyperplane system R on M characterizes the projective embedding of M into $\mathbb{P}$(T) in the following sense: for any two nondegenerate complex submanifolds $M{\subset}\mathbb{P}$(T) and $M^{\prime}{\subset}\mathbb{P}$(T'), there is a projective linear transformation that sends an open subset of M onto an open subset of M' if and only if (M,R) is locally equivalent to (M', R'). Se-ashi developed a theory for the differential invariants of these types of systems of linear differential equations. In particular, the theory applies to systems of linear differential equations that have symbols equivalent to the hyperplane systems on nondegenerate equivariant embeddings of compact Hermitian symmetric spaces. In this paper, we extend this result to hyperplane systems on nondegenerate equivariant embeddings of homogeneous spaces of the first kind.
In this paper, we prove some rigidity results about embedded minimal hypersurface M ⊂ ℝn+1 with compact ∂M that has one end which is regular at infinity. We first show that if M ⊂ ℝn+1 meets a hyperplane in a constant angle ≥ /2, then M is part of an n-dimensional catenoid. We show that if M meets a sphere in a constant angle and ∂M lies in a hemisphere determined by the hyperplane through the center of the sphere and perpendicular to the limit normal vector nM of the end, then M is part of either a hyperplane or an n-dimensional catenoid. We also show that if M is tangent to a C2 convex hypersurface S, which is symmetric about a hyperplane P and nM is parallel to P, then M is also symmetric about P. In special, if S is rotationally symmetric about the xn+1-axis and nM = en+1, then M is also rotationally symmetric about the xn+1-axis.
Shin-Ok Bang;Dong Seo Kim;Dong-Soo Kim;Wonyong Kim
대한수학회논문집
/
제39권1호
/
pp.211-221
/
2024
Parallel conics have interesting area and chord properties. In this paper, we study such properties of conics and conic hypersurfaces. First of all, we characterize conics in the plane with respect to the above mentioned properties. Finally, we establish some characterizations of hypersurfaces with centrally symmetric hyperplane sections.
We consider the special hypersurface of the first approximate Matsumoto metric with $b_i(x)={\partial}_ib$ being the gradient of a scalar function b(x). In this paper, we consider the hypersurface of the first approximate Matsumoto space with the same equation b(x)=constant. We are devoted to finding the condition for this hypersurface to be a hyperplane of the first or second kind. We show that this hypersurface is not a hyper-plane of third kind.
본 논문에서는 주성분 해석 기법에 기반한 새로운 벡터 양자화 코드북 설계 방법을 제안한다. 주성분 해석 알고리즘은 입력 영상벡터를 더 작은 차원의 특징 벡터로 변환시키는데 사용되며, 변환된 영역에서 특징 벡터의 군집을 최적으로 결정된 분할 초평면을 이용하여 두 군집으로 분할하는 과정을 반복 함으로써 코드북을 생성한다. 본 논문에서는 연산 시간이 오래 걸리는 최적 분할 초평면 탐색을 (1) 분할 초평면은 특징 벡터의 주축에 수직이며, (2) 좌우측 부군집의 오차의 균형점과 일치하며, (3) 좌우측 부군집의 오차를 점진적으로 조정함으로서 연산 수행 시간을 크게 단축시켰다. 제안한 주축 연속 분할은 분할전후의 오차의 감축이 가장 큰 군집에 대해, 전체 군집의 오차가 설정한 수준보다 작을 때까지 연속적으로 수행된다. 실험 결과 제안한 주성분 해석 기반 벡터 양자화 방법은 SOFM을 이용한 방법보다 수행시간이 빠르며 K-mean 알고리즘을 이용한 방법보다 복원 성능이 뛰어남을 볼 수 있다.
Suppose that M is a strictly convex hypersurface in the (n + 1)-dimensional Euclidean space 𝔼n+1 with the origin o in its convex side and with the outward unit normal N. For a fixed point p ∈ M and a positive constant t, we put 𝚽t the hyperplane parallel to the tangent hyperplane 𝚽 at p and passing through the point q = p - tN(p). We consider the region cut from M by the parallel hyperplane 𝚽t, and denote by Ip(t) the (n + 1)-dimensional volume of the convex hull of the region and the origin o. Then Schneider's characterization theorem for ellipsoids states that among centrally symmetric, strictly convex and closed surfaces in the 3-dimensional Euclidean space 𝔼3, the ellipsoids are the only ones satisfying Ip(t) = 𝜙(p)t, where 𝜙 is a function defined on M. Recently, the characterization theorem was extended to centrally symmetric, strictly convex and closed hypersurfaces in 𝔼n+1 satisfying for a constant 𝛽, Ip(t) = 𝜙(p)t𝛽. In this paper, we study the volume Ip(t) of a strictly convex and complete hypersurface in 𝔼n+1 with the origin o in its convex side. As a result, first of all we extend the characterization theorem to strictly convex and closed (not necessarily centrally symmetric) hypersurfaces in 𝔼n+1 satisfying Ip(t) = 𝜙(p)t𝛽. After that we generalize the characterization theorem to strictly convex and complete (not necessarily closed) hypersurfaces in 𝔼n+1 satisfying Ip(t) = 𝜙(p)t𝛽.
웹사이트 운영이 비즈니스 모델로서의 성공을 거두기 위한 가장 중요한 요소 중 하나는 웹사용자의 성향을 분석하여 이를 효율적으로 이용하는 것이다. 사용자 분석을 통하여 사용자들에게 웹사이트의 가치를 효율적으로 전달하고 이를 통하여 운영자는 충분한 수익을 거둘 수 있다. 이러한 점에서 웹 사이트를 이용하는 사용자들의 취향과 행동방식을 얻어내려는 웹 방문 패턴 발견으로써의 사용자 클러스터링은 매우 중요하다. 또한 얻어진 사용자의 클러스터링 정보는 웹 개인화나 웹 사이트를 재구성하는데 필수적이다. 본 논문에서는 사용자 웹 방문 데이터를 정제하고 분류하여 그 특성에 따라 사용자들을 몇 개의 그룹으로 클러스터링 하기 위한 알고리즘이 제안된다. 알고리즘은 2단계로 구성되는데 첫 번째 단계는 초기해를 구하는 단계로서, 패스의 사이각을 이용하여 유사도를 측정하고 이 유사도에 따라 K개의 사용자 그룹으로 분류하여 초기해를 구한다. 두번째 단계는 첫 번째 단계에서 구한 초기해를 개선하여 최적해를 찾는 과정으로서 하이퍼플레인을 이용하여 클러스터링하는 개량된 K-평균알고리즘을 제안한다. 또한 실험을 통하여 기존의 방법과 비교하여 제안된 알고리즘의 효율성과 패스 특성이 보다 정확하게 계산된 클러스터링이 구현됨을 확인할 수 있다.
The first author suggested an exact volume formula of the hypercubes [0, 1]n clipped by several hyperplanes expressed directly in terms of linear coefficients of the hyperplanes. However, it requires awkward assumptions to apply the formula to various situations. We suggest a concrete method to overcome those restrictions for two or three hyperplanes using 𝜖-perturbation, which gives an exact value applicable for any kind of arrangement of hyperplanes with no consideration.
In the present paper, we have studied the Finslerian hypersurfaces and generalized ${\beta}$-conformal change of Finsler metric. The relations between the Finslerian hypersurface and the other which is Finslerian hypersurface given by generalized ${\beta}$-conformal change have been obtained. We have also proved that generalized ${\beta}$-conformal change makes three types of hypersurfaces invariant under certain conditions.
본 논문에서는 support vector machine (SVM)을 이용하여 기존의 3GPP2 selectable mode vocoder (SMV)코덱의 음성/음악 분류 성능을 향상시키는 방법을 제시한다. SVM은 통계적 학습 이론으로 훈련 데이터 사이의 최적 분류 초평면을 찾아내 최적화된 이진 분류를 보여준다. SMV의 음성/음악 실시간 분류 알고리즘에서 사용된 특징벡터와 분류방법을 분석하고, 이를 기반으로 분류성능향상을 위해 통계적 학습 이론인 SVM을 도입한다. 구체적으로, SMV의 음성/음악 분류알고리즘에서 사용되어진 특징벡터만을 선택적으로 사용하여 효과적으로 SVM을 구성한 분류기법을 제시한다. SMV의 음성/음악 분류에 적용한 SVM의 성능 평가를 위해 SMV 원래의 분류알고리즘과 비교하였으며, 다양한 음악장르에 대해 시스템의 성능을 평가한 결과 SVM을 이용하였을 때 기존의 SMV의 방법보다 우수한 음성/음악 분류 성능을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.