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ON DIFFERENTIAL INVARIANTS OF HYPERPLANE

SYSTEMS ON NONDEGENERATE EQUIVARIANT

EMBEDDINGS OF HOMOGENEOUS SPACES

Jaehyun Hong

Abstract. Given a complex submanifoldM of the projective space P(T ),
the hyperplane system R on M characterizes the projective embedding
of M into P(T ) in the following sense: for any two nondegenerate com-
plex submanifolds M ⊂ P(T ) and M ′

⊂ P(T ′), there is a projective linear
transformation that sends an open subset of M onto an open subset of M ′

if and only if (M,R) is locally equivalent to (M ′, R′). Se-ashi developed
a theory for the differential invariants of these types of systems of linear
differential equations. In particular, the theory applies to systems of lin-
ear differential equations that have symbols equivalent to the hyperplane
systems on nondegenerate equivariant embeddings of compact Hermitian
symmetric spaces. In this paper, we extend this result to hyperplane sys-
tems on nondegenerate equivariant embeddings of homogeneous spaces of

the first kind.

1. Introduction

Let L/L′ ⊂ P(T ) be a nondegenerate equivariant embedding of homoge-
neous space L/L′, where L is a connected complex Lie group and L′ is a
closed subgroup of L. We say that L/L′ ⊂ P(T ) is Griffiths-Harris rigid if
the fundamental forms of L/L′ ⊂ P(T ) determine embedding L/L′ ⊂ P(T )
in the following sense: Let M ⊂ P(T ) be a (not necessarily closed) complex
sub-manifold. If the fundamental forms of M at the general points of M are
isomorphic to the fundamental forms of L/L′ at the base point, then M is
projectively equivalent to an open subset of L/L′.

Theorem 1.1 (Landsberg [4, 5] Hwang-Yamaguchi [3]). Suppose L/L′ ⊂ P(T )
is a nondegenerate equivariant embedding of a compact Hermitian symmetric

space L/L′, which contains neither Pn, for n ≥ 1, nor Qn, for n ≥ 2 as an

irreducible factor. Then L/L′ ⊂ P(T ) is Griffiths-Harris rigid.
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A rational homogeneous variety L/L′ ⊂ P(T ) that is not a compact Her-
mitian symmetric space, has nonzero differential invariants in addition to its
fundamental forms (Theorem 4.1 in [6]). Therefore, we cannot expect that they
are Griffiths-Harris rigid. In order to obtain similar rigidity results, we must
consider additional differential invariants.

We say that L/L′ ⊂ P(T ) is Fubini-Griffiths-Harris rigid if the Fubini forms
of L/L′ ⊂ P(T ) determine embedding L/L′ ⊂ P(T ) as follows. Let M ⊂ P(T )
be a (not necessarily closed) complex sub-manifold. Assume there exists a sub-

bundle F̃M of the bundle FM of first-order adapted frames of M , defined over
the general points of M , on which the coefficients of the k-th Fubini forms of
M agree with the coefficients of the k-th Fubini forms of L/L′ for all k. Then
M is projectively equivalent to an open subset of L/L′.

Theorem 1.2 (Landsberg-Robles [8, 9]). Let L/L′ ⊂ P(T ) be a nondegenerate

equivariant embedding of a rational homogeneous variety L/L′ that contains

neither Pn, for n ≥ 1, nor Qn, for n ≥ 2 as an irreducible factor. Then

L/L′ ⊂ P(T ) is Funibi-Griffiths-Harris rigid.

Landsberg applied the moving frame method in order to prove Theorem 1.1
for the case in which L/L′ has rank 2. For the proof of Theorem 1.1, Hwang-
Yamaguchi used Se-ashi theory of differential invariants of linear differential
equations, which reduced the problem to a vanishing of the Lie algebra co-
homology H1(l−1, l

⊥). Here, l⊥ represents the orthogonal complement of l in
sl(S) with respect to the Killing form of sl(S), and S is the dual representation
space of T . The vanishing of H1(l−1, l

⊥) follows from the Kostant theory of
Lie algebra cohomology.

Subsequently, in [8] and [9], Landsberg and Robles introduced a filtered
exterior differential system in order to reduce the rigidity problem in Theorem
1.2 to the vanishing of H1(l−, l

⊥), where l⊥ is the orthogonal complement of l
in sl(T ) with respect to the Killing form of sl(T ). As in the proof of Theorem
1.1, they applied Kostant theory of Lie algebra cohomology in order to prove
the vanishing of H1(l−, l

⊥).
In this paper we generalize these rigidity results to homogeneous spaces of

the first kind. A homogeneous space L/L′ is said to be of the first kind if
there is a grading on the Lie algebra l of L such that l = l−1 ⊕ l0 ⊕ l1 and
l′ = l0 ⊕ l1. Let τ : L → GL(T ) be an irreducible representation of L with
a vector t ∈ T such that the isotropy group of L at [t] ∈ P(T ) is L′. Then
L/L′ = L.[t1] ⊂ P(T ) is a nondegenerate equivariant embedding of L/L′, and
any non-degenerate equivariant embedding L/L′ ⊂ P(T ) is obtained in this
way (For various examples and their embeddings see Section 2).

Let ρ : l → gl(S) be the dual representation of τ . Then ρ(l−1) ⊂ gl(S)−1,
where the grading on gl(S) is induced by the osculating filtration on T . Let
g =

⊕
k gk be the prolongation of ρ : l−1 → gl(S)−1 and let G (G′, respectively)

be a subgroup of GL(S) with the Lie algebra g (g′ =
⊕

k≥0 gk, respectively).

The representation of g−1 on the orthogonal complement g⊥ of g in gl(S)
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induces a complex (C(g⊥), ∂) (Section 6). Let H(g−1, g
⊥) =

⊕
q H

q(g−1, g
⊥)

be the cohomology space of (C(g⊥), ∂).

Theorem 1.3. Let L/L′ ⊂ P(T ) be a nondegenerate equivariant embedding of

a homogeneous space of the first kind. Assume that

(1) there is a positive definite Hermitian inner product ( , ) on C1(g⊥)
such that the kernel Ker ∂∗ of the adjoint operator ∂∗ of ∂ with respect

to ( , ) is G′-invariant;
(2) H1(g−1, g

⊥) = 0.

Then L/L′ ⊂ P(T ) is Griffiths-Harris rigid.

In order to prove Theorem 1.3 we apply Se-ashi theory to the hyperplane
system on complex manifold M ⊂ P(T ), as in the proof of Theorem 1.1. Se-
ashi studied an integrable system of differential equations, one that has the
same symbol as the hyperplane system on L/L′ ⊂ P(T ) when L/L′ ⊂ P(T )
is a nondegenerate equivariant embedding of a compact Hermitian symmetric
space L/L′, and obtained a complete system of differential invariants on this
kind of system of differential equations. We generalize this theory to integrable
systems of differential equations that have the same symbols as the hyperplane
system on nondegenerate equivariant embedding L/L′ ⊂ P(T ) of homogeneous
space L/L′ of the first kind.

As in the cases treated in Theorems 1.1 and 1.2, the rigidity of L/L′ ⊂ P(T )
in Theorem 1.3 can be reduced to a vanishing of the Lie algebra cohomology.
The difficulty is that there is no uniform way of computing it in our case. When
L/L′ is a compact Hermitian symmetric space, g is the direct sum of l and the
center of GL(S) and we can apply Kostant theory of Lie algebra cohomology
to compute H1(l−, l

⊥), which works only when l is semisimple. However, in
general, g is not reductive and Kostant theory is not applicable. Therefore, to
show the vanishing of H1(g−1, g

⊥), we need to develop a new theory, which we
will deal with in a forthcoming paper in preparation.

The rest of the paper is organized as follows. In Section 2, we explain
horospherical homogeneous spaces and give examples of homogeneous spaces
of the first kind in addition to compact Hermitian symmetric spaces, and in
Section 3, we recall definitions and properties concerning fundamental forms.
Section 4 reviews Se-ashi’s theory of differential invariants on linear differential
equations. In Section 5 we apply Se-ashi theory to homogenous space L/L′ of
the first kind, and show that the model system is isomorphic to the hyperplane
system on L/L′ (Proposition 5.5). A key lemma used to construct a complete
system of invariants addresses the existence of a ‘good’ metric on the complex
(C(g⊥), ∂) defining Lie algebra cohomology H1(g−1, g

⊥). In Section 6, we
construct a complete system of invariants under the assumption that there
exists such a metric, and prove the rigidity of L/L′ under the assumption that
H1(g−1, g

⊥) = 0 (Theorem 1.3).
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2. Homogeneous spaces of the first kind

2.1. Rational homogeneous varieties

A semisimple graded Lie algebra over C is a semisimple Lie algebra l with
gradation l =

⊕
p∈Z

lp such that

[lp, lq] ⊂ lp+q for p, q ∈ Z.

Then there exists a unique element E ∈ l0 such that

lp = {X ∈ l : [E,X ] = pX} for p ∈ Z.

We call E the characteristic element of the semisimple graded Lie algebra
l =

⊕
p∈Z

lp. A nilpotent graded Lie algebra m =
⊕−µ

p=−1 lp such that

lp = [lp+1, l−1] for p < −1

is called a fundamental graded Lie algebra of µ-th kind.
To each semisimple graded Lie algebra l =

⊕
p∈Z

lp over C such that l− :=⊕
p<0 lp is fundamental, there corresponds a homogeneous space L/L′, where

L = Int(l) · L0, and L0 is the automorphism group of the graded Lie algebra
l = ⊕p∈Zlp, that is, the subgroup of Aut(l) consisting of elements which preserve
the gradation, and L′ is the automorphism group of the filtered Lie algebra
{f(p) :=

⊕
q≥p lp} for p ∈ Z. A semisimple graded Lie algebra over C of the

first kind, i.e., l = l−1⊕ l0⊕ l1, corresponds to a compact Hermitian symmetric
space.

Let τ : L→ GL(T ) be a representation of L with a vector t ∈ T such that the
isotropy group of L at [t] ∈ P(T ) is L′. Then L/L′ can be embedded into P(T )
via [l] ∈ L/L′ 7→ l.[t] ∈ P(T ). We call L/L′ ⊂ P(T ) a rational homogeneous
variety.

2.2. Horospherical varieties

Let L be a reductive group. A homogeneous space L/L′ is called horospher-

ical if the map from L/L′ to L/P , in which P is the normalizer of L′ in L, is a
(C×)r-bundle over the rational homogeneous variety L/P . r is called the rank

of the horospherical space L/L′. A normal variety X is said to be horospherical
if there is an open L-orbit that is horospherical.

A smooth horospherical L-variety X of Picard number one is either homo-
geneous or one of the following ([10]):

(1) (Bn, ωn−1, ωn), n ≥ 3;
(2) (B3, ω1, ω3);
(3) (Cn, ωi+1, ωi), n ≥ 2 and i ∈ {1, 2, . . . , n− 1};
(4) (F4, ω2, ω3);
(5) (G2, ω2, ω1).

Here, (L, ωi, ωj) is the closure of the L-orbit L[vi ⊕ vj ] in P(V (ωi)⊕ V (ωj)).
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Let Y := L.[vi] and Z := L.[vj ]. Let L̂ be the automorphism group Aut(X)

of X . Then, L̂ = (L × C∗) ⋉ H0(Y,NY/X), and L̂ has two orbits: an open

orbit L̂.[vi] and a closed orbit L̂.[vj ] = L.[vj ] = Z. Here, L̂.[vi] is smooth and a
simple embedding of L/H = L.[vi⊕vj ] with a unique closed L-orbit L.[vi] = Y ,

giving us isomorphism L ×Pi
Vi = NY/X → L̂.[vi]. Furthermore, H0(Y,NY/X)

acts on L×Pi
Vi = NY/X as translations on fibers. The Lie algebra l̂ = l⊕C⊕u

of L̂ is contained in gl(V (ωi)⊕ V (ωj)) in the following way:
(

l 0
u C

)
.

2.3. Smooth projective two-orbit varieties

Proposition 2.1 (Theorem 1 of [1]). Let X̂ be a smooth complete variety with

an effective action of the connected linear non semi-simple group L̂. Suppose

that X̂ has two orbits under the action of L̂ and that the closed orbit has

codimension 1. Let L be a maximal semi-simple subgroup of L̂. Then there

exist a parabolic subgroup L′ of L and a L′-module V such that:

(1) the action of L′ on P(V ) is transitive;
(2) there exists an irreducible L-module U and a surjective L′-equivariant

morphism ε : U → V ;

(3) X̂ = L×L′ P(V ⊕ C) as an L-variety. L×L′ V is the open L̂-orbit.

(4) L̂ is either L⋉ U or (L× C∗)⋉ U .

(5) X̂ is a horospherical L-variety of rank 1.
(6) The L-module U is the set of global sections of the vector bundle L×L′

V → L/L′ and ε : U → V is the evaluation map at [L′] ∈ L/L′.

The open orbit L̂/L̂′ = L ×L′ V of a smooth two-orbit variety X̂ = L ×L′

P(V ⊕ C) is a homogeneous space of the first kind if and only if L/L′ is a
compact Hermitian symmetric space.

In fact, if L/L′ is a compact Hermitian symmetric space, then l = l−1⊕l0⊕l1
is a semisimple graded Lie algebra of the first kind. Let E be the characteristic
element. Let u denote the Lie algebra of U . Then we have the eigenspace
decomposition of u: u = u(c) ⊕ u(c+1). Let u−1 = u(c) and u0 = u(c+1). Also,

set l̂ = l⊕ u. Then

l̂ = (l−1 ⊕ u−1)⊕ (l0 ⊕ u0)⊕ l1,

and the tangent space of L̂/L̂′ at the base point [L′] can be identified with

l̂− := l−1 ⊕ u−1.

Example. A smooth horospherical variety X of Picard number one in Section

2.2 has an open orbit isomorphic to that of smooth two-orbit variety X̂ in
Proposition 2.1. In fact, the blow-up of X along the closed orbit L.[vj ] is one

of the X̂ in Proposition 2.1. Details of this can be found in [10]. Among them,
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the open orbits in (B3, ω1, ω3) and (Cn, ωn, ωn−1) are homogeneous spaces of
the first kind.

3. Fundamental forms

3.1. Fundamental forms of M ⊂ P(T )

Let M ⊂ P(T ) be a complex manifold and let x ∈ M be a point. Assume

TxM denotes the tangent space of M at x and T̂xM ⊂ T is the (affine) tangent

space of the cone M̂ in T at any p ∈ T with x = [p]. Then we have TxM =

(T̂xM/x̂) ⊗ x̂∗. Also, suppose NxM = TxP(T )/TxM represents the normal

space of M at x. Then NxM = (T/T̂xM)⊗ x̂∗.
If E is the restriction of the hyperplane bundle on P(T ) to M , then, from

N∗
xM = (T/T̂xM)∗⊗x̂ = (T̂xM)⊥⊗E∗

x, it follows thatN
∗
xM⊗Ex = (T̂xM)⊥ ⊂

T ∗.
Define Gauss map γ : M → Gr(n + 1, T ) to be γ(x) = T̂xM . Then the

derivative dγx induces a linear map FF2 : S2TxM → NxM , called the second

fundamental form of M at x. If FF2 : S2TxM → NxM is not surjective, we
can refine flag x̂ ⊂ T̂xM ⊂ T in order to obtain a refined invariant.

Let T̂
(2)
x M = T̂xM+ F̂F

2(S2TxM)⊗E∗
x ⊂ T . Define the second order Gauss

map γ(2) : M → Gr(n(2), T ) by γ(2)(x) = T̂
(2)
x M . The derivative dγ

(2)
x defines

a linear map FF
3 : S3TxM → TxP(T )/(T

(2)
x M), called the third fundamental

form of M at x.
More generally, the k-th fundamental form of M at x is a linear map

FFk : SkTxM → Nk
xM,

which can be obtained by differentiating the (k − 1)-th Gauss map γ(k−1) :

M → Gr(n(k−1) , T ) defined by γ(k−1)(x) = T̂
(k−1)
x M , where T̂

(k−1)
x M =

T̂
(k−2)
x M+FF

k−1(Sk−1TxM)⊗Ex is the (k−1)-th osculating space andNk
xM =

(T̂
(k)
x M/T̂

(k−1)
x M) ⊗ Ex is the k-th normal space. These osculating spaces

determine a flag of T :

0 ⊂ x̂ ⊂ T̂xM ⊂ T̂ (2)
x M ⊂ · · · ⊂ T̂ (p)

x M = T,

which is called the osculating filtration. The fundamental forms describe the in-

finitesimal movement ofM away from its (k−1)-th osculating space T̂
(k−1)
x M ⊂

T at order k.
The osculating filtration induces a filtration of S := T ∗:

S = T ∗ ⊃ x̂⊥ ⊃ (T̂ (1)
x )⊥ ⊃ (T̂ (2)

x )⊥ ⊃ · · · ⊃ 0.

Moreover, if we set Sk := (T̂
(k−1)
x )⊥/(T̂

(k)
x )⊥, then Sk =

(
T̂

(k)
x /T̂

(k−1)
x

)∗

and

S = ⊕p
k=0Sk.
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The dual of FFk ⊗ E∗
x : SkTx ⊗ E∗

x → Nk
x ⊗ E∗

x = (T̂
(k)
o /T̂

(k−1)
x ) produces

injective map

S = ⊕p
k=0Sk → ⊕

p
k=0S

kT ∗
x ⊗ Ex.

Let |FFk
x| denote the image of Sk in SkT ∗

x ⊗ Ex.
Let V be a vector space and let A ⊂ SdV ∗ be a linear subspace. Define A(1)

to be (A ⊗ V ∗) ∩ Sd+1V ∗. Then P ∈ A(1) if and only if for all v ∈ V , w 7→
P (v, w, . . . , w) belongs to A. Given v ∈ V , let i(v) : SkV ∗ → Sk−1V ∗ denote
the interior product. In addition, let Jac(A) := {i(v)P : v ∈ V, P ∈ A} ⊂
Sd−1V ∗, the Jacobian space of S. Then A(1) = {P ∈ Sd+1V ∗ : Jac(P ) ⊂ A}.

Proposition 3.1. (1) We have i(v)|FFk
x| ⊂ |FF

k−1
x | for any v ∈ Tx.

(2) If i(v)(⊕p
k=0|FF

k
x|) = 0, v ∈ Tx, then v = 0.

Proof. (1) The statement follows from the fact that |FFk
x| ⊂ |FF

k−1
x |(1) (Section

2.1.3 of [7]).

(2) S1 = (T̂
(0)
x )⊥/(T̂

(1)
x )⊥ = (T̂x/x̂)

∗ → TxX
∗ ⊗ (x̂)∗ is an isomorphism.

Thus, if i(v)|FF1
x| = 0, then v = 0. �

3.2. Fundamental forms of L/L′
⊂ P(T )

Let τ : L→ GL(T ) be an irreducible representation of a complex Lie group
L, and let [t1] be a point in P(T ) with isotropy L′. Then the map L → P(T )
defined by g 7→ g.[t1] induces a nondegenerate equivariant embedding of L/L′

into P(T ).
Extend t1 to a basis {t1, . . . , tr} of T and take the dual basis {s1, . . . , sr} of

S = T ∗. The dual representation ρ : L→ GL(S) of τ is given by

〈ρ(g)s, t〉 = 〈s, τ(g−1)(t)〉

for g ∈ L and s ∈ S and t ∈ T . Let W be the subspace of S spanned by s1.
Since L′ is the stabilizer of [t1], representation ρW : L′ → GL(W ) is produced
through projection π0 : S = W ⊕W ′ →W . Let E be the line bundle on L/L′

that is induced by representation ρW : L′ → GL(W ).

Proposition 3.2. With the notations above.

(1) There is an injective map ι from S into the space H0(L/L′, E) of holo-
morphic sections of E.

(2) Let Σ := ι(S). Let φ : L/L′ → P(Σ∗) denote the map induced by the

subspace Σ of H0(L/L′, E), i.e.,

φ([g]) = the hyperplane {σ ∈ Σ : σ([g]) = 0} of Σ.

Then φ : L/L′ → P(Σ∗) is projectively equivalent to the embedding of

L/L′ into P(T ) given by [g] ∈ L/L′ 7→ [g.t1] ∈ P(T ).
(3) E is the restriction of the hyperplane bundle O(1) on P(Σ∗) to L/L′.

Proof. (1) For each s ∈ S define function fs : L→W by fs(g) = π0(ρ(g
−1)s).

Then fs(gg
′) = ρW (g′)−1fs(g) for all g, g

′ ∈ L. Thus fs defines a section σs of



260 J. HONG

E. Thus we have a map ι : S → H0(L/L′, E). By the irreducibility of ρ, ι is
injective.

(2) It suffices to show this for [t1] ∈ P(T ). ϕ([t1]) = {σs : s ∈ S, σs([t1]) =

0}
ι
≃W ′, and the hyperplane W ′ of S corresponds to [t1] ∈ P(T ).
(3) follows from (1). �

Suppose l is the Lie algebra of L. Let U(l) = l⊗/{ξ ⊗ ζ − ζ ⊗ ξ − [ξ, ζ]}
denote the universal enveloping algebra of l and assume U(l)k signifies the k-th
term in the filtration induced by the filtration from the tensor algebra. Then
U(l)k/U(l)k−1 = Skl.

Proposition 3.3 (Proposition 2.3 of [7]). With the notations above.

(1) The k-th osculating space T̂
(k)
x of L/L′ at x = [t1] is U(l)k.t1.

(2) The k-th fundamental form FF
k : SkTx → Nk

x of L/L′ at x = [t1] is
given by

U(l)k −→ T̂ (k)
x ⊗ Ex

↓ ↓

SkTx
FF

k

−→ Nk
x

where map U(l)k → T̂
(k)
x ⊗ Ex is defined by u 7→ (u.t1) ⊗ s1 and map

U(l)k → SkTx is the quotient map induced by l→ l/l′ = Tx.

Recall that S can be thought of as graded vector space ⊕p
k=0Sk, where

Sk =
(
T

(k)
x /T

(k−1)
x

)∗

=
(
T̂

(k−1)
x

)⊥

/
(
T̂

(k)
x

)⊥

.

Proposition 3.4. Assume there is an l′-invariant complement l− of l′ in l so

that l = l′ ⊕ l−. Then, we can conclude the following.

(1) τ(l−) maps T
(k−1)
x to T

(k)
x , and ρ(l−) maps Sk to Sk−1.

(2) Given v ∈ Tx = l−, we have a commutative diagram:

SkT ∗
x ⊗ Ex

(FFk⊗E∗

x
)∗

←− (Nk
x ⊗ E∗

x)
∗ = Sk

i(v) ↓ ↓ ρ(v)

Sk−1T ∗
x ⊗ Ex

(FFk−1⊗E∗

x
)∗

←− (Nk−1
x ⊗ E∗

x)
∗ = Sk−1.

Proof. The twisted k-th fundamental map FF
k⊗E∗

x : SkTx⊗E∗
x −→ Nk

x ⊗E∗
x,

sends [u]⊗ s∗1 ∈ SkTx ⊗ E∗
x to [u.t1] ∈ U(l)k.t1/U(l)k−1.t1 = Nk

x ⊗ E∗
x, where

u ∈ U(l)k. Therefore, its dual (FFk ⊗ E∗
x)

∗ : (Nk
x ⊗ E∗

x)
∗ −→ (SkTx ⊗ E∗

x)
∗ is

given by

ϕ ∈ (Nk
x ⊗ E∗

x)
∗ 7−→ ([u]⊗ s∗1 7→ ϕ([u.t1])).

If we identify Tx with l−, and Ex = (x̂)∗ with S0 = T ∗/x̂⊥, then Sk →
SkT ∗

x ⊗ Ex is given by

ϕ ∈ Sk 7→ ((v1, . . . , vk) ∈ SkTx 7→ (−1)kρ(v1) · · · ρ(vk)ϕ ∈ Ex),
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where v1, . . . , vk ∈ Tx = l−. �

Proposition 3.5. Assume that there is a grading on l of depth one, i.e., l =
l−1 ⊕ l0 ⊕ l1 and [li, lj ] ⊂ li+j for any i, j ∈ {−1, 0, 1}, such that l′ = l0 ⊕ l1.

Then we have

ρ(li)(Sk) ⊂ Sk+i for i ∈ {−1, 0, 1} and for k ∈ {0, . . . , p}.

Proof. By Proposition 3.3(1), T
(k)
x = U(l)k.t1 = Skl.t1 + U(l)k−1.t1. Since

[l0, l−1] ⊂ l−1 and [l1, l−1] ⊂ l0, we have τ(l0)(U(l)k.t1) ⊂ U(l)k.t1 and
τ(l1)(U(l)k.t1) ⊂ U(l)k−1.t1. Hence ρ(l0)(Sk) ⊂ Sk and ρ(l1)(Sk−1) = Sk. �

4. Linear differential equations

4.1. Symbols of systems of linear differential equations

Given a vector bundle E over a manifold M , we use Jp(E) to denote the
bundle of p-jets of E. We obtain an exact sequence

0→ SpT ∗ ⊗ E → Jp(E)→ Jp−1(E)→ 0.

A subbundle R of Jp(E) is called a system of linear differential equations of

order p on E. A solution of R is a local section s of E satisfying jpx(s) ∈ Rx

at each x ∈ M , where jpx(s) denotes the p-th jet of s at the point x ∈ M .
Additionally, σr(R) := πp

r (R) ∩ (SrT ∗ ⊗E) is called the r-th symbol of R, and
σ(R) = ⊕σr(R) is called the symbol of R. A system R of linear differential
equations of order p is said to be of finite type if σp(R) = 0. A finite type linear
differential equation R is said to be integrable if for every x ∈ M and every
η ∈ Rp

x, there is a solution s of R such that jpx(s) = η.
Let (M,E,Rn) and (M ′, E′, (Rn)′) be two systems of linear differential equa-

tions of order n. A bundle isomorphism φ : E → E′ is said to be an isomorphism
of R onto R′ if the induced bundle isomorphism Jn(φ) : Jn(E)→ Jn(E′) maps
Rn onto (Rn)′.

4.2. Model systems of type S

Let V and W be two vector spaces and let S =
⊕p

r=0 Sr ⊂
⊕p

r=0 S
rV ∗⊗W

be a subspace with S0 = W and Sp = 0. We say that a linear differential
equation (M,E,R) is of type S, if there exist linear isomorphisms zT : V ≃ Tx

and zE : W ≃ Ex such that the induced isomorphism (tz−1
T ) ⊗ zE : Sp(V ∗) ⊗

W ≃ Sp(T ∗
x )⊗ Ex sends Sp onto σp(R)x for every p and for every x ∈M .

Assume that

(A1) The action of V leaves S invariant,
(A2) The action of V on S is faithful.

Define

ar = (Sr+1V ∗ ⊗ V )⊕ (SrV ∗ ⊗ gl(W )),

a =
⊕

r≥−1

ar.
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Then a is the Lie algebra of infinitesimal bundle automorphisms of trivial bun-
dle E0 = V ×W on V . Define

g = {X ∈ a : X(S) ⊂ S}, gr = g ∩ ar.

Then g is the Lie lagebra of infinitesimal automorphisms of system R̂S =
V × S ⊂ Jp(E0) of linear differential equations. Define

gl(S)r = {X ∈ gl(S) : X(Sk) ⊂ Sk+r for any k}.

Proposition 4.1 (Proposition 2.2.2 of [12]). With the notations as above.

gp = {X ∈ gl(S)p : [g−1, X ] ⊂ gp−1}.

The group GL(V ) × GL(W ) acts on a by the adjoint action: (aX)(s) =
(aXa−1)(s) for s ∈ S. Define

G0 = {a ∈ GL(V )×GL(W ) : a(S) ⊂ S},

GL(0)(S) = {g ∈ GL(S) : g(Sr) ⊂ Sr for any r},

G = G̃ ·G0,

G′ = G ∩GL(0)(S).

Define ρW : G′ → GL(W ) through the projection S =
⊕p

r=0 Sr → S0 = W .
Let ES = G×G′ W . Then each s ∈ S defines an element σs of H0(G/G′, ES).
Put (RS)x = {jpx(σs) : s ∈ S}. Then RS = ∪x∈M (RS)x is a system of Linear
differential equations. (G/G′, RS) is called the model equation of type S.

4.3. Canonical G(0) reductions

Define a subgroup G(0) of GL(0)(S) by

G(0) = {a ∈ GL(0)(S) : gr(a) ∈ G0}.

Then the Lie algebra of G(0) is g(0) = g0 ⊕
⊕p−1

r=1 gl(S)r.

Proposition 4.2 (Section 3.2 of [12]). Consider an integrable system R of

linear differential equations of finite type of order p of type S on E, let F (R)
denote the frame bundle of R, and assume ω̃ is the connection form on F (R)
induced from the flat connection on R. Then there is a canonical reduction

P (R) of F (R) to subgroup G(0) of GL(S).

Proposition 4.3 (Proposition 3.2.2 of [12]). Let ω be the restriction to P (R)
of the connection form ω̃ on F (R).

(1) We have R∗
aω = Ad(a)−1ω for every a ∈ G(0).

(2) ω(X∗) = X for every X ∈ g(0), where X∗ stands for the fundamental

vector field corresponding to X.

(3) dω + 1
2ω ∧ ω = 0.

(4) ω−1 is a g−1-valued basic form.

(5) ωq = 0 for q ≤ −2.
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Furthermore, (P (R), ω) characterizes the equivalence class of the system R
as follows.

Proposition 4.4 (Proposition 3.3.1 of [12]). Let R and R′ be integrable sys-

tems of type S. Let (P (R), ω) (resp., (P (R′), ω′) be the natural reduction of

F (R) (resp. F (R′)) to G(0). Then the isomorphism φ of R onto R′ induces

bundle isomorphism P (φ) : (P (R), ω) → (P (R′), ω′), i.e., P (φ) is a bundle

isomorphism of P (R) onto P (R′) satisfying P (φ)∗ω′ = ω. Conversely, for any

isomorphism Φ : (P (R), ω) → (P (R′), ω′), there exists a unique isomorphism

φ of R onto R′ such that Φ = P (φ).

5. Hyperplane systems

Let M ⊂ P(T ) be a nondegenerate complex submanifold. Assume that E is
the line bundle on M obtained by restricting the hyperplane line bundle O(1)
of P(T ). Let Σ be the image of the restriction map ι : H0(P(T ),O(1)) →
H0(M,E). By the nondegeneracy of M , ι is injective. Thus

T ∗ = H0(P(T ),O(1))
ι
≃ Σ.

Let p > 0 be a positive integer such that an element of Σ that has a zero of
order ≥ p at a point of M is identically zero. Define Rx ⊂ Jp

x(E) by

Rx := {jpx(s) : s ∈ Σ}

and define a subbundle R ⊂ Jp(E) over a Zariski open subset Mo of M by

R :=
⋃

x∈Mo

Rx.

We call R the hyperplane system on M . Given this construction, R is of finite
type and integrable.

Proposition 5.1 (Section 4 of [6]). If M ⊂ P(T ) is a nondegenerate complex

submanifold and R is the hyperplane system on M , then the symbol σr(R) of

R equals |FFr|.

Proposition 5.2 (Proposition 1 of [3]). Suppose M and M ′ are two nondegen-

erate submanifolds of P(T ). Let R (R′, respectively) be the hyperplane system

on M (M ′, respectively), and assume that R and R′ are of the same order.

Then R and R′ are locally equivalent if and only if there exists a projective

linear transformation sending an open subset of M onto an open subset of M ′.

Proposition 5.3. Let M be a complex submanifold of P(T ) and let S be the

symbol of the hyperplane system R on M . Then S satisfies (A1) and (A2) in

Section 4.2.

Proof. This follows directly from Proposition 3.1. �
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Let L/L′ ⊂ P(T ) be a non-degenerate equivariant embedding of a homoge-
neous space L/L′. By Proposition 5.3, the symbol S of the hyperplane system
R on L/L′ satisfies (A1) and (A2) in Section 4.2. However, (L/L′, R) is not
necessarily equivalent to the model system (G/G′, RS) of type S, which was
constructed in Section 4.2.

Proposition 5.4 (Proposition 4.4.1 of [12]). Let M = L/L′ ⊂ P(T ) be a

nondegenerate equivariant embedding of a compact Hermitian symmetric space.

Let S be the symbol of the hyperplane system R on M . Then the hyperplane

system (M,R) is isomorphic to the model system (G/G′, RS) of type S.

Similarly, we obtain the following proposition.

Proposition 5.5. Let M = L/L′ ⊂ P(T ) be a nondegenerate equivariant

embedding of a homogeneous space of the first kind. Let S be the symbol of

the hyperplane system R on M . Then M is an open subset of G/G′, and

the hyperplane system (M,R) is isomorphic to the model system (G/G′, RS)
restricted to M .

Proof. l−1 = g−1 = V . It suffices to show that l0 ⊂ g0 and l1 ⊂ g1. By
Proposition 3.5, li ⊂ gl(S)i for i = 0, 1. By Proposition 4.1(2), we have li ⊂ gi
for i = 0, 1. �

6. Normal reductions

Assume L/L′ ⊂ P(T ) is a nondegenerate equivariant embedding of a homo-
geneous space of the first kind. Then the Lie algebra l of L has a gradation of
depth one, i.e., l = l−1 ⊕ l0 ⊕ l1. If S =

⊕
r≥0 Sr ⊂ S(V ) ⊗W is the symbol

of the hyperplane system on L/L′ ⊂ P(T ), with V = l−1 and W = S0, then,
by Proposition 5.3, S ⊂ S(V )⊗W satisfies (A1) and (A2) in Section 4.2. Let
g =

⊕
gr and gl(S) =

⊕
gl(S)r be defined according to Section 4.2. Then

g−1 = V ⊂ gl(S)−1.
Let (G/G′, RS) be the model system of type S constructed in Section 4.2.

Proposition 4.2 ensures canonical reduction (P (RS), ωS) of the frame bundle
F (RS) of RS to G(0).

Proposition 6.1 (Proposition 3.4.1 of [12]). Suppose (G/G′, RS) is the model

equation of type S. Then there is a canonical G′ reduction (Q(RS), χS) with

χS := ωS|Q(RS), which is a flat Cartan connection of type G/G′.

In general, it is not obvious that there is a G′ reduction (Q(R), χ) of the
frame bundle F (R) when R is an integrable system of linear differential equa-
tions of type S. To explain the conditions we need to get a G′-reduction
of F (R), we introduce a chain complex associated to the graded Lie algebra
g =

⊕
gr ⊂ gl(S).
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Set Cp,q = ∧q(g−1)
∗⊗ gl(S)p−1 and set Cq =

⊕
p C

p,q and C =
⊕

q C
q. We

define ∂ : Cp,q → Cp−1,q+1 by

∂c(v0, . . . , vq) =

q∑

i=0

(−1)i[vi, c(v0, . . . , v̂i, . . . , vq)]

for c ∈ Cp,q and v0, . . . , vq ∈ g−1.
Moreover, we define a bilinear form Tr on gl(S) by

Tr(X,Y ) = Trace of the endomorphism XY of S,

where X,Y ∈ gl(S). The bilinear form Tr is Ad(G) invariant and nondegen-
erate. Let g⊥ be the orthogonal complement of g in gl(S) with respect to Tr.
Then g⊥ is Ad(G)-invariant.

Put C(g⊥) = ∧(g−1)
∗⊗g⊥. Then (C(g⊥), ∂) is a subcomplex of (C, ∂). The

cohomology space Hq(g−1, g
⊥) of (C(g⊥), ∂) is called the Lie algebra cohomol-

ogy associated to the representation of g−1 on g⊥. Here, we remark that the
representation of g−1 on g⊥ is the restriction of the adjoint representation of
gl(S) on gl(S). It is well-defined because g⊥ is Ad(G)-invariant.

For a ∈ G(0) and c ∈ Cq, define ac ∈ Cq by

(ac)(v1, . . . , vq) = Ad(a)c(Ad(a−1
0 )v1, . . . , Ad(a

−1
0 )vq),

where a = a0 exp(X1) · · · exp(Xn−1), a0 ∈ G0, Xp ∈ gl(S)p for p = 1, . . . , n− 1,
and v1, . . . , vq ∈ g−1.

Let ( , ) be a positive definite Hermitian inner product on C. Let ∂∗ denote
the adjoint of ∂, i.e., (∂c, c′) = (c, ∂c∗) for any c ∈ Cq, c′ ∈ Cq+1. Then we
know

Cq = Im ∂ ⊕Ker ∂∗.

If we set ∆ = ∂∂∗ + ∂∗∂ and Hq(l−1, g
⊥) := Ker(∆ : Cq(g⊥) → Cq(g⊥)),

then

Cq(g⊥) = Im∂ ⊕Hq(l−1, g
⊥)⊕ Im∂∗.

Thus, the Lie algebra cohomology space Hq(l−1, g
⊥) is isomorphic to Hq(l−1,

g⊥). We use Hq : Cq(g⊥)→ Hq(l−1, g
⊥) to denote the projection.

Given an integrable system R of differential equations of type S on a complex
manifold M , let (P (R), ω) be the canonical G(0) reduction of the frame bundle
(F (R), ω̃) (Proposition 4.2). Then ω is a gl(S)-valued 1-form on P (R).

Proposition 6.2 (Proposition 5.1.1 of [12]). Let (Q(R), χ) be a G′-reduction

of (P (R), ω). Let χg (respectively, χg⊥) be the g-component (g⊥-component,

respectively) of χ with respect to the decomposition gl(S) = g⊕ g⊥. Then

(1) (Q(R), χg) is a Cartan connection of type G/G′ over M and

(2) χg⊥ is a tensorial 1-form on Q(R).

Define a function c : Q(R)→ C1(g⊥) by

c(u)(X) = χg⊥(X∗
u)
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for u ∈ Q(R) and X ∈ l−1. Then c is called the structure function on Q(R). A
G′-reduction (Q(R), χ) is said to be normal if the function c is ∂∗-closed.

Proposition 6.3 (Theorem 5.1.2, Theorem 5.3.1 of [12]). Assume that L/L′ ⊂
P(T ) is a nondegenerate equivariant embedding of a homogeneous space of the

first kind. Let S =
⊕

r≥0 Sr ⊂ S(V )⊗W denote the symbol of the hyperplane

system on L/L′ ⊂ P(T ), with V = l−1 and W = S0 and let (G/G′, RS) be

the model system of type S constructed in Section 4.2. Assume that there is a

positive definite Hermitian inner product ( , ) on C(g⊥) such that the kernel

Ker ∂∗ of the adjoint operator ∂∗ of ∂ with respect to ( , ) is invariant under

the action of G′. Then

(1) For any integrable system R of differential equations of type S, there
exists a unique normal reduction (Q(R), χ) of (P (R), ω).

(2) Let R and R′ be integrable systems of type S. Then an isomorphism φ
of R onto R′ induces an isomorphism Q(φ) : (Q(R), χ)→ (Q(R′), χ′).
Conversely, given an isomorphism Φ : Q(R), χ) → (Q(R′), χ′), there
exists a unique isomorphism φ of R onto R′ such that Ψ = Q(φ).

(3) If the structure function c vanishes identically, then R is locally iso-

morphic with the model system of type S. Furthermore, the harmonica

part Hc of c provides a fundamental system of invariants of R, i.e., c
vanishes if and only if Hc vanishes.

We remark that in Theorem 5.1.2 and Theorem 5.3.1 of [12], one assumes
that L/L′ is a compact Hermitian symmetric space, while in Proposition 6.3
L/L′ is a homogeneous space of the first kind. The same arguments in the
proof of these Theorems work if we assume that there is a positive definite
Hermitian inner product ( , ) on C(g⊥) such that Ker ∂∗, which is the orthog-
onal complement of Im ∂ in C, is invariant under the action of G′. For details,
see the proof of Theorem 5.1.2 and Theorem 5.3.1 of [12].

Proof of Theorem 1.3. Let L/L′ ⊂ P(T ) be a non-degenerate equivariant em-
bedding of a homogeneous space L/L′ of the first kind. Then the symbol S of
the hyperplane system RL/L′ on L/L′, satisfies the conditions (A1) and (A2)
by Proposition 5.3. Let (G/G′, RS) be the model system of type S constructed
in Section 4.2.

Assume that there is a positive definite Hermitian inner product ( , ) on
C(g⊥) such that the kernel Ker ∂∗ of the adjoint operator ∂∗ of ∂ with respect
to ( , ) is invariant under the action of G′.

Let M be a complex submanifold of P(T ). Assume that the fundamental
forms of M at the general points of M are isomorphic to the fundamental
forms of L/L′ at the base point. Then the hyperplane system R on M has
type S. By Proposition 6.3(1), there is a normal G′ reduction Q(R). Let c be
the structure function of Q(R). Then Hc ∈ H1(g−, g

⊥). By the assumption
that H1(g−, g

⊥) = 0, we have Hc = 0. By Proposition 6.3(3), R is locally
isomorphic to the model system RS . By Proposition 5.5 RS is isomorphic to
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RL/L′ . Therefore, M is projectively equivalent to an open subset of L/L′ by
Proposition 5.1. �
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