• Title/Summary/Keyword: hydroxyl radicals

Search Result 348, Processing Time 0.024 seconds

The Effect of UV Intensity and Wavelength on the Photolysis of Triclosan (TCS) (광반응을 이용한 Triclosan 분해에서의 UV 광세기와 파장의 효과)

  • Son, Hyun-Seok;Choi, Seok-Bong;Khan, Eakalak;Zoh, Kyung-Duk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.9
    • /
    • pp.1006-1015
    • /
    • 2005
  • We investigated the effect of hydroxyl radicals on the photolysis of triclosan (TCS), which is a potent broad-spectrum antimicrobial agent. TCS degradation during the initial reaction time of 5 min followed a pseudo-first order kinetic model ai all light intensities at a wavelength of 365 nm and at the low light intensities at a wavelength of 254 nm. The photodegradation rate significantly increased with decreasing wavelength and increasing the UV intensities. The activity of hydroxyl radicals was suppressed when methanol was used as the solvent instead of water. An increase in the photon effect was observed when the UV intensity was higher than $5.77{\times}10^{-5}$ einstein $L^{-1}min^{-1}$ at 254 nm, and lower than $1.56{\times}10^{-4}$ einstein $L^{-1}min^{-1}$ at 365 nm. The quantum yield efficiency for the photolysis of TCS was higher at 365 nm than at 254 nm among the above mentioned UV intensities. Dibenzodichloro-p-dioxin (DCDD) and dibenzo-p-dioxin were detected as intermediates at both UV intensities of $1.37{\times}10^{-4}$ and $1.56{\times}10^{-4}$ einstein $L^{-1}min^{-1}$ at 365 nm. Dichlorophenol and phenol were also detected in all cases. Based on our findings, we presented a possible mechanism of TCS photolysis.

Probiotic Effects of Lactobacillus plantarum and Leuconostoc mesenteroides Isolated from Kimchi (김치에서 분리한 Lactobacillus plantarum과 Leuconostoc mesenteroides의 프로바이오틱 효과)

  • Lee, Kyung-Hee;Bong, Yeon-Ju;Lee, Hyun Ah;Kim, Hee-Young;Park, Kun-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.1
    • /
    • pp.12-19
    • /
    • 2016
  • The probiotic effects of kimchi lactic acid bacteria (LAB), Lactobacillus plantarum (Lab. plantarum) and Leuconostoc mesenteroides (Leu. mesenteroides), were studied. Lab. plantarum KCCM 11352P (LPpnu) and Leu. mesenteroides KCCM 11353P (LMpnu) were isolated from kimchi and were the predominant LAB. We compared their probiotic effects with Lactobacillus rhamnosus GG (LRgg), a well-known probiotic LAB. LPpnu showed better probiotic activities than LRgg. LMpnu also exhibited almost equal activities as LRgg. These two kimchi LAB strains exhibited resistance to gastric and bile acid, adhesion to intestines, and thermal stability. In particular, LPpnu showed excellent probiotic properties. In addition, LPpnu showed greater antioxidant activity by scavenging DPPH radicals or hydroxyl radicals than LMpnu or LRgg. LPpnu also inhibited growth of HT-29 human colon cancer cells by inducing apoptosis, increasing Bax and suppressing Bcl-2 expression compared to LMpnu or LRgg. Taken together, LPpnu and LMpnu could be used as probiotics, and LPpnu exhibited the most beneficial probiotic activities with anti-oxidant and anti-cancer properties.

Expression of Cu/Zn SOD according to H2O2 in Hepatoma cell line (Hepatoma 세포주에서 H2O2 처리에 의한 Cu/Zn SOD의 발현)

  • Kim, Young-Min;Seo, Won-Sook
    • Journal of Life Science
    • /
    • v.17 no.2 s.82
    • /
    • pp.230-234
    • /
    • 2007
  • Oxygen is required for many important aerobic cellular reactions, it may undergo electrontransfer reactions, which generate highly reactive membrane-toxic intermediates (reactive oxygen species, ROS), such as hydrogen peroxide, singlet oxygen, superoxide radical, hydroxyl radical, hydroperoxyl radical, hydroxy ion. Various mechanisms are available to protect cells against damage caused by oxidative free radicals, including scavenging enzyme systems such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). This antioxidant defense system is a very complex and finely tuned system consisting of enzymes capable of detoxifying oxygen radicals as well as low molecular weight antioxidants. In addition, repair and turnover processes help to minimize subcellular damage resulting from free radical attack. $H_2O_2$,one of the major ROS, is produced at a high rate as a product of normal aerobic metabolism. The primary cellular enzymatic defense systems against $H_2O_2$ are the glutathione redox cycle and catalase. From Northern blot analysis of total RNAs from cultured cell with $H_2O_2$ treatment, various results were obtained. Expression of Cu/Zn SOD decreased when cell passage increased, but the level of the Cu/Zn SOD was scarcely expressed in 35 passage.

Antioxidant and anti-inflammatory properties of extracts from Allium hookeri root (삼채(Allium hookeri) 뿌리 추출물의 항산화 및 항염증 특성)

  • Zhang, Chengmei;Tong, Tao;Kim, Chong-Kyung;Liu, Yajuan;Seo, Hyuk-Jun;Kim, Bo-Sup;Kang, Seong-Gook
    • Food Science and Preservation
    • /
    • v.22 no.6
    • /
    • pp.867-877
    • /
    • 2015
  • In this study, antioxidant and anti-inflammatory activities of water, methanol, and ethanol extracts obtained from Allium hookeri root were evaluated. The ethanol extract of A. hookeri was found to possess the strongest reducing power and also exhibited dominant effects on scavenging of nitrites, DPPH radicals, and superoxide radicals. The water extract showed more efficient DPPH and hydroxyl radical-scavenging activities than those of the methanol extract. Furthermore, the inhibitory activity against nitric oxide (NO) production in RAW 264.7 macrophages was evaluated to elucidate the anti-inflammatory properties of the extracts. Results indicated that all the extracts of A. hookeri exerted inhibitory activities against NO production, especially the ethanol extract ($IC_{50}29.13{\mu}g/mL$). Total phenolic and total flavonoid contents were found to be abundant in the ethanol extract, with values of 24.96 mg gallic acid equivalent/g extract and 4.27 mg rutin equivalent/g extract, respectively. Total thiosulfinate content was determined for the first time and a high amount was present in the ethanol extract ($14.2{\mu}M/g$ extract). These results suggest that A. hookeri root has antioxidant and anti-inflammatory properties and could be used as a natural source for the development of pharmaceutical agents or functional foods.

Protective Effect of Dietary Buchu (Allium tuberosum Rottler) on Oxidative Stress and Lipofuscin Formation in Streptozotocin-Induced Diabetic Rats (Streptozotocin-유발 당뇨쥐에서 부추식이의 산화적 스트레스 및 Lipofuscin 생성 억제 효과)

  • 이점옥;류승희;이유순;김정인;문갑순
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.8
    • /
    • pp.1337-1343
    • /
    • 2003
  • Diabetes mellitus has been known to be a state of increased oxidative stress. Free radical formation and lipid peroxidation are accelerated in this metabolic disorder. Buchu (Allium tuberosum Rottler) contains lots of antioxidative nutrients such as chlorophyll, vitamin C, $\beta$-carotene, phenolic compounds and sulfur compounds. To investigate the protective effects of buchu, 10% lyophilized buchu diet was fed to streptozotocin (STZ)-induced diabetic rats for 14 weeks and lipid peroxidation, protein oxidation, contents of reactive oxygen species, activities of antioxidative enzymes and contents of accumulated lipofuscin were measured as indicators of oxidative stress. Hepatic MDA and carbonyl contents tended to decrease in 10% buchu diet group compared with control group. Dietary buchu significantly suppressed lipid and protein oxidation in the skin of rats (p<0.05). Contents of hepatic hydroxyl radicals, which exert the highest toxicity among the reactive oxygen species, were significantly decreased in rats fed 10% buchu diet (P<0.05). Activities of antioxidative enzyme, such as superoxide dismutase, catalase, and glutathione peroxidase, tended to increase in liver and skin of rats fed 10% buchu diet, while hepatic catalase activity was significantly increased in buchu group compared with control group. Buchu supplementation significantly inhibited the accumulation of lipofuscin, an end-product of lipid peroxidation reactions induced by reactive oxygen radicals, in eye tissues compared with control diet (p<0.001). In conclusion, buchu supplementation diminished the oxidative stress, so dietary buchu could help to attenuate diabetes complications.

Antioxidant Properties of Tannic Acid and its Inhibitory Effects on Paraquat-Induced Oxidative Stress in Mice

  • Choi, Je-Min;Han, Jin;Yoon, Byoung-Seok;Chung, Jae-Hwan;Shin, Dong-Bum;Lee, Sang-Kyou;Hwang, Jae-Kwan;Ryang, Ryung
    • Food Science and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.728-734
    • /
    • 2006
  • The tannins represent a highly heterogeneous group of water-soluble plant polyphenols that may play an important role in antimutagenic and antioxidant properties. We investigated the antioxidant function of tannic acid in comparison to other phenolic compounds including catechin, chlorogenic acid, cinnamic acid, ellagic acid, and gallic acid for their ability to scavenge several stable radicals and reactive oxygen species (ROS) such as ${\bullet}DPPH^+$, ${\bullet}ABTS^+$, hydrogen peroxide, hydroxyl radical, and superoxide radical. The ability of tannic acid to decrease paraquat-induced lipid oxidation in mouse liver and lung through its antioxidant properties was also assessed. The results showed that almost all the tested compounds have stable radical scavenging activity except cinnamic acid. Tannic acid, gallic acid, and ellagic acid demonstrated remarkable ROS scavenging properties toward $H_2O_2$, ${\bullet}OH^-$, ${\bullet}O_2^-$ and especially only tannic acid could inhibit paraquat-induced lipid peroxidation effectively in mouse liver and lung. Based on these results, it appears that increased number of galloyl and ortho-hydroxyl groups enhances the antioxidant activity of phenolic compounds and tannic acid is evaluated as the most effective antioxidant among all the tested compounds. These results suggest that the tannins, especially tannic acid, can be used as therapeutic agent for various diseases caused by ROS.

Effects of Rhus verniciflua Stokes (RVS) on Cell-associated Detoxificant Enzymes and Glucose Oxidase-mediated Toxicity in Cultured Mouse Hepatocytes

  • Lim, Kye-Taek;Lee, Jeong-Chae;Jung, Hee-Young;Jo, Sung-Kyun
    • Toxicological Research
    • /
    • v.16 no.2
    • /
    • pp.125-131
    • /
    • 2000
  • The ethanol extract of Rhus verniciflua Stokes (RVS), the Korean Lacquer tree, was subsequentely isolated and fractioned into two portions using distilled water (SED) and 99% ethanol (SEE) as elution buffers through silica gel column (4x28 em, 22 $\AA$. 28~200 mesh). To know the antioxidative effect of the RVS extracts, primary hepatocytes were exposed to hydroxyl radical generated by 20 mU/$m\ell$ glucose oxidase with SED or SEE for 4 hr. The addition of 100$\mu\textrm{g}$/$m\ell$ SED in culture medium showed good protection from glucose oxidase (GO)-mediated cytotoxicity of hepatocytes, showing approximately equivalent to control. When the hepatocytes were incubated with 100 $\mu\textrm{g}$/$m\ell$ SED or SEE only for 4 hr. the activities of cell-associated superoxide dismutase (SOD) and catalase were elevated up to 1.22 fold and 1.4 fold, respectively, compared to control. Further increase, 1.88fold in SOD activity or 1.64fold in catalase activity, was also observed when the hepatocytes were incubated with 100 units/$m\ell$ of commercial SOD or catalase for 4 hr. Moreover. the glucose oxidase-mediated cytotoxicity in cultured hepatocytes was generally reduced upon addition of lysate obtained from SED or SEE-stimulated hepatocytes in a dose-dependent manner. From these results, we suggest that, in cultured hepatocytes, RVS ethanol extract can efficiently reduce cytotoxicity induced by glucose oxidase and may increase the activity of cell-associated SOD and/or catalase, thereby preventing and/or scavenging superoxides and hydroxyl radicals in this experiment.

  • PDF

L-lysine and L-arginine inhibit the oxidation of lipids and proteins of emulsion sausage by chelating iron ion and scavenging radical

  • Xu, Peng;Zheng, Yadong;Zhu, Xiaoxu;Li, Shiyi;Zhou, Cunliu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.6
    • /
    • pp.905-913
    • /
    • 2018
  • Objective: To evaluate the effects of L-lysine (Lys)/L-arginine (Arg) on lipid and protein oxidation of emulsion sausage during storage and its possible mechanism. Methods: Four samples were prepared based on the presence or absence of additional sodium isoascorbate, Lys, or Arg: sample A (control), sample B (0.05 g of sodium isoascorbate), sample C (0.4 g of Lys), and sample D (0.4 g of Arg). Peroxide value (POV), thiobarbituric reactive substances (TBARS), protein carbonyls and thiols were measured. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and hydroxyl radical-scavenging, ferrous ion-chelating ability were also measured. Results: Compared with the control, the sample treated with sodium isoascorbate, Lys or Arg had significantly lower POV during the initial 20 days, TBARS during the initial 15 days. Protein carbonyls were significantly lower compared Sample B, C, and D with A during the later storage (10 to 25 days); basically, protein thiols became lower during storage when the samples were treated with sodium isoascorbate, Lys, or Arg. Both Lys and Arg had weak reducing power but strong ferrous ion-chelating activity and DPPH radical- and hydroxyl radical-scavenging activity. Conclusion: Both Lys and Arg effectively inhibited the oxidation of lipids and proteins in emulsion sausage by scavenging free radicals and chelating ferrous ions. The results obtained may be favorable for the prevention of lipid and protein oxidation during processing and storage of meat products.

Antiradical Capacities of Perilla, Sesame and Sunflower Oil

  • Hong, Sun-Hee;Kim, Mi-Jin;Oh, Chan-Ho;Yoon, Suk-Hoo;Song, Yeong-Ok
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.1
    • /
    • pp.51-56
    • /
    • 2010
  • The aim of this study is to examine the radical scavenging activity of perilla and sesame oil that Koreans traditionally consume. For DPPH radical scavenging activity, oil and its hexane/70% methanol extracts (ME) are used and for superoxide and hydroxyl radical scavenging activities, ME are used. Unrefined perilla oil, sesame oil, and refined sunflower oil are used. The yields for ME of perilla, sesame and sunflower oil are 0.57, 0.61, and 0.30%, respectively, and the amounts of phenolic compounds in ME of corresponding oil are 18.77, 88.64 and $0.05\;{\mu}g$ tannic acid/mg, respectively. $IC_{50}$ for DPPH scavenging activity of perilla, sesame and sunflower oil are 2.12, 1.91, and 3.35 mg/mL, respectively and those for ME of corresponding oils are 0.42, 0.07, and 43.11 mg/mL, respectively. In DPPH assay, the solvent used for oil sample is iso-octane and that for ME is methanol. Superoxide anion scavenging activity of ME of perilla, sesame and sunflower oil tested at 1 mg/mL concentration are 21.10, 13.25, and 3.14%, respectively. Hydroxyl radical scavenging activities of those samples tested at 1 mg/mL concentration are 86.08, 93.30, and 93.17%, respectively. In summary, the refining process seems to remove the phenolic compound during oil processing. Antiradical substances in perilla and sesame oils responsible for scavenging DPPH radicals are present in the methanol fraction, while the antiradical substances in the sunflower oil are in the lipid fraction. DPPH scavenging activity of ME of sesame oil is significantly higher than that of perilla oil (p<0.05). However, superoxide anion scavenging capacity of ME of perilla oils was found to be greater than that of both sesame and sunflower oils (p<0.05).

Cisplatin-induced Alterations of $Na^+$-dependent Phosphate Uptake in Renal Epithelial Cells

  • Lee, Sung-Ju;Kwon, Chae-Hwa;Kim, Yong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.2
    • /
    • pp.71-77
    • /
    • 2007
  • Cisplatin treatment increases the excretion of inorganic phosphate in vivo. However, the mechanism by which cisplatin reduces phosphate uptake through renal proximal tubular cells has not yet been elucidated. We examined the effect of cisplatin on $Na^+$-dependent phosphate uptake in opossum kidney (OK) cells, an established proximal tubular cell line. Cells were exposed to cisplatin for an appropriate time period and phosphate uptake was measured using $[^{32}P]$-phosphate. Changes in the number of phosphate transporter in membranes were evaluated by kinetic analysis, $[^{14}C]$phosphonoformic acid binding, and Western blot analysis. Cisplatin inhibited phosphate uptake in a time- and dose-dependent manner, and also the $Na^+$-dependent uptake without altering $Na^+$-independent uptake. The cisplatin inhibition was not affected by the hydrogen peroxide scavenger catalase, but completely prevented by the hydroxyl radical scavenger dimethylthiourea. Antioxidants were ineffective in preventing the cisplatin-induced inhibition of phosphate uptake. Kinetic analysis indicated that cisplatin decreased Vmax of $Na^+$-dependent phosphate uptake without any change in the Km value. $Na^+$-dependent phosphonoformic acid binding was decreased by cisplatin treatment. Western blot analysis showed that cisplatin caused degradation of $Na^+$-dependent phosphate transporter protein. Taken together, these data suggest that cisplatin inhibits phosphate transport in renal proximal tubular cells through the reduction in the number of functional phosphate transport units. Such effects of cisplatin are mediated by production of hydroxyl radicals.