DOI QR코드

DOI QR Code

Probiotic Effects of Lactobacillus plantarum and Leuconostoc mesenteroides Isolated from Kimchi

김치에서 분리한 Lactobacillus plantarum과 Leuconostoc mesenteroides의 프로바이오틱 효과

  • Lee, Kyung-Hee (Department of Food Science and Nutrition, Pusan National University) ;
  • Bong, Yeon-Ju (Department of Food Science and Nutrition, Pusan National University) ;
  • Lee, Hyun Ah (Kimchi Research Institute, Pusan National University) ;
  • Kim, Hee-Young (Department of Food Science and Nutrition, Pusan National University) ;
  • Park, Kun-Young (Department of Food Science and Nutrition, Pusan National University)
  • Received : 2015.09.21
  • Accepted : 2015.11.02
  • Published : 2016.01.31

Abstract

The probiotic effects of kimchi lactic acid bacteria (LAB), Lactobacillus plantarum (Lab. plantarum) and Leuconostoc mesenteroides (Leu. mesenteroides), were studied. Lab. plantarum KCCM 11352P (LPpnu) and Leu. mesenteroides KCCM 11353P (LMpnu) were isolated from kimchi and were the predominant LAB. We compared their probiotic effects with Lactobacillus rhamnosus GG (LRgg), a well-known probiotic LAB. LPpnu showed better probiotic activities than LRgg. LMpnu also exhibited almost equal activities as LRgg. These two kimchi LAB strains exhibited resistance to gastric and bile acid, adhesion to intestines, and thermal stability. In particular, LPpnu showed excellent probiotic properties. In addition, LPpnu showed greater antioxidant activity by scavenging DPPH radicals or hydroxyl radicals than LMpnu or LRgg. LPpnu also inhibited growth of HT-29 human colon cancer cells by inducing apoptosis, increasing Bax and suppressing Bcl-2 expression compared to LMpnu or LRgg. Taken together, LPpnu and LMpnu could be used as probiotics, and LPpnu exhibited the most beneficial probiotic activities with anti-oxidant and anti-cancer properties.

본 연구에서는 김치에서 분리한 우점유산균인 Lactobacillus plantarum KCCM 11352P(LPpnu)와 Leuconostoc mesenteroides KCCM 11353P(LMpnu)의 프로바이오틱 효과를 프로바이오틱 효과가 높기로 잘 알려진 Lactobacillus rhamnosus GG(LRgg)의 효능과 비교하여 확인하였다. 그 결과 LPpnu는 Lab. rhamnosus GG(LRgg)보다 프로바이오틱 효과가 더 뛰어났으며, LMpnu 또한 LRgg와 거의 유사한 수준의 효능을 나타냈다. LPpnu와 LMpnu는 모두 내산, 내담즙성, 장 부착능, 열 안정성의 프로바이오틱의 기본 특성을 가지고 있었으며, 특히 LPpnu는 가장 높은 프로바이오틱 효과를 나타냈다. 또한 LMpnu 및 LRgg와 비교했을 때 LPpnu는 DPPH radical과 hydroxyl radical 소거능 측정에서 더 높은 항산화능을 보였고, Bcl-2 유전자 발현억제와 Bax 유전자 발현 증가를 통해 apoptosis를 유도함으로써 HT-29 human colon cancer cell에서 높은 암세포 성장 저해 효과를 나타냈다. 이를 통해 김치유래 LPpnu와 LMpnu는 프로바이오틱으로서 이용 가능성이 충분하다고 판단되며, 특히 LPpnu는 항산화 및 항암 활성에 뛰어난 효능을 나타내었기에 중요한 프로바이오틱 균주라고 하겠다.

Keywords

References

  1. Park KY, Jeong JK, Lee YE, Daily JW 3rd. 2014. Health benefits of kimchi (Korean fermented vegetables) as a probiotic food. J Med Food 17: 6-20. https://doi.org/10.1089/jmf.2013.3083
  2. Park KY, Kim BK. 2012. Lactic acid bacteria in vegetable fermentation. In Lactic Acid Bacteria. Lahtinen S, Ouwehand AC, Salminen S, von Wright A, eds. CRC Press, Boca Raton, FL, USA. p 187-211.
  3. Jeong EJ, Moon DW, Oh JS, Moon JS, Eom HJ, Choi HS, Kim CS, Han NS. 2012. Composition optimization of cabbage extract medium for cell growth of Lactobacillus plantarum. Korean Soc Biotechnol Bioengineering J 27: 347-351.
  4. Fumiko H, Masafumi N, Tomokazu A, Kazuhiro N, Hirotaka O, Masanori S. 2010. Improvement of constipation and liver function by plant-derived lactic acid bacteria: a double-blind, randomized trial. Nutrition 26: 367-374. https://doi.org/10.1016/j.nut.2009.05.008
  5. FAO/WHO. 2006. Probiotics in food: Health and nutritional properties and guidelines for evaluation (FAO Food Nutr Paper 85). World Health Organization and Food and Agriculture Organization of the United Nations, Roma, Italy.
  6. Salminen MK, Tynkkynen S, Rautelin H, Saxelin M, Vaara M, Ruutu P, Sarna S, Valtonen V, Jarvinen A. 2002. Lactobacillus bacteremia during a rapid increase in probiotic use of Lactobacillus rhamnosus GG in Finland. Clin Infect Dis 35: 1155-1160. https://doi.org/10.1086/342912
  7. Cebeci A, Gurakan C. 2003. Properties of potential probiotic Lactobacillus plantarum strains. Food Microbiol 20: 511-518. https://doi.org/10.1016/S0740-0020(02)00174-0
  8. De Vries MC, Vaughan EE, Kleerebezem M, De Vos WM. 2006. Lactobacillus plantarum-survival, functional and potential probiotic properties in the human intestinal tract. Int Dairy J 16: 1018-1028. https://doi.org/10.1016/j.idairyj.2005.09.003
  9. Jung JY, Lee SH, Lee HJ, Seo HY, Park WS, Jeon CO. 2012. Effects of Leuconostoc mesenteroides starter cultures on microbial communities and metabolites during kimchi fermentation. Int J Food Microbiol 153: 378-387. https://doi.org/10.1016/j.ijfoodmicro.2011.11.030
  10. Choi HJ, Kim DW, Joo WH. 2014. Characteristics of Paenibacillus sp. BCNU 5016 as a novel probiotic. J Life Sci 24: 161-166. https://doi.org/10.5352/JLS.2014.24.2.161
  11. Bang JH, Shin H, Choi HJ, Kim DW, Ahn CS, Jeong YK, Joo WH. 2012. Probiotic potential of Lactobacillus isolates. J Life Sci 22: 251-258. https://doi.org/10.5352/JLS.2012.22.2.251
  12. Kil JH. 2004. Studies on development of cancer preventive and anticancer kimchi and its anticancer mechanism. PhD Dissertation. Pusan National University, Busan, Korea.
  13. Liu CT, Chu FJ, Chou CC, Yu RC. 2011. Antiproliferative and anticytotoxic effects of cell fractions and exopolysaccharides from Lactobacillus casei 01. Mutat Res-Gen Tox En 721: 157-162. https://doi.org/10.1016/j.mrgentox.2011.01.005
  14. Kobayashi Y, Tohyama K, Terashima T. 1974. Studies on biological characteristics of Lactobacillus: II. Tolerance of the multiple antibiotic resistant strain, L. casei PSR 3002, to artificial digestive fluids. Nippon Saikingaku Zasshi 29: 691-697. https://doi.org/10.3412/jsb.29.691
  15. Jung JK, Kil JH, Kim SK, Jeon JT, Park KY. 2007. Survival of double-microencapsulated Bifidobacterium breve in milk in simulated gastric and small intestinal conditions. J Food Sci Nutr 12: 58-63. https://doi.org/10.3746/jfn.2007.12.1.058
  16. Blum S, Reniero R, Schiffrin EJ, Crittenden R, Mattila-Sandholm T, Ouwehand AC, Salminen S, von Wright A, Saarela M, Saxelin M, Collins K, Morelli L. 1999. Adhesion studies for probiotics: need for validation and refinement. Trends Food Sci Technol 10: 405-410. https://doi.org/10.1016/S0924-2244(00)00028-5
  17. Park DJ, An EY, Kim JS, Imm JY, Han KS, Kim SH, Oh SJ. 2002. Dry enteric coating process of lactic acid bacteria by hybridization system. Korean J Food Sci Technol 34: 856-861.
  18. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  19. Halliwell B, Gutteridge JM, Aruoma OI. 1987. The deoxyribose method: a simple "test-tube" assay for determination of rate constants for reactions of hydroxyl radicals. Anal Biochem 165: 215-219. https://doi.org/10.1016/0003-2697(87)90222-3
  20. Sim JH, Oh SJ, Kim SK, Baek YJ. 1995. Comparative tests on the acid tolerance of some lactic-acid-bacteria species isolated from lactic fermented products. Korean J Food Sci Technol 27: 101-104.
  21. Klaver FA, van der Meer R. 1993. The assumed assimilation of cholesterol by Lactobacilli and Bifidobacterium bifidum is due to their bile salt-deconjugating activity. Appl Environ Microbiol 59: 1120-1124.
  22. Jung SE, Kim SH. 2015. Probiotic properties of lactic acid bacteria isolated from commercial raw makgeolli. Korean J Food Sci Technol 47: 44-50. https://doi.org/10.9721/KJFST.2015.47.1.44
  23. Seo JH, Lee H. 2007. Characteristics and immunomodulating activity of lactic acid bacteria for the potential probiotics. Korean J Food Sci Technol 39: 681-687.
  24. Bernet MF, Brassart D, Neeser JR, Servin AL. 1993. Adhesion of human bifidobacterial strains to cultured human intestinal epithelial cells and inhibition of enteropathogen-cell interactions. Appl Environ Microbiol 59: 4121-4128.
  25. Coconnier MH, Klaenhammer TR, Kerneis S, Bernet MF, Servin AL. 1992. Protein-mediated adhesion of Lactobacillus acidophilus BG2FO4 on human enterocyte and mucus-secreting cell lines in culture. Appl Environ Microbiol 58: 2034-2039.
  26. Saulnier DM, Spinler JK, Gibson GR, Versalovic J. 2009. Mechanisms of probiosis and prebiosis: considerations for enhanced functional foods. Curr Opin Biotechnol 20: 135-141. https://doi.org/10.1016/j.copbio.2009.01.002
  27. Saito T, Lim KS. 2012. Immunogenicity and survival strategy of Lactobacillus rhamnosus GG in the human gut. Korean J Dairy Sci Technol 30: 31-36.
  28. Buck BL, Altermann E, Svingerud T, Klaenhammer TR. 2005. Functional analysis of putative adhesion factors in Lactobacillus acidophilus NCFM. Appl Environ Microbiol 71: 8344-8351. https://doi.org/10.1128/AEM.71.12.8344-8351.2005
  29. Gouesbet G, Jan G, Boyaval P. 2002. Two-dimensional electrophoresis study of Lactobacillus delbrueckii subsp. bulgaricus thermotolerance. Appl Environ Microbiol 68: 1055-1063. https://doi.org/10.1128/AEM.68.3.1055-1063.2002
  30. Kim SS, Jeong MH, Seo YC, Kim JS, Kim NS, Woon WB, Ahn J, Hwang B, Park DS, Park SJ, Lee HY. 2010. Comparison of antioxidant activity by high pressure extraction of Codonopsis lanceolata from different production areas. Korean J Med Crop Sci 18: 248-254.
  31. Sanders JW, Leenhouts KJ, Haandrikman AJ, Venema G, Kok J. 1995. Stress response in Lactococcus lactis: cloning, expression analysis, and mutation of the lactococcal superoxide dismutase gene. J Bacteriol 177: 5254-5260. https://doi.org/10.1128/jb.177.18.5254-5260.1995
  32. Lin MY, Yen CL. 1999. Antioxidative ability of lactic acid bacteria. J Agric Food Chem 47: 1460-1466. https://doi.org/10.1021/jf981149l
  33. Cho YH, Imm JY, Kim HY, Hong SG, Hwang SJ, Park DJ, Oh S. 2009. Isolation and partial characterization of isoflavone transforming Lactobacillus plantarum YS712 for potential probiotic use. Korean J Food Sci Ani Resour 29: 640-646. https://doi.org/10.5851/kosfa.2009.29.5.640
  34. Hirayama K, Rafter J. 2000. The role of probiotic bacteria in cancer prevention. Microbes Infect 2: 681-686. https://doi.org/10.1016/S1286-4579(00)00357-9
  35. Kim HY, Bae HS, Baek YJ. 1991. In vivo antitumor effects of lactic acid bacteria on sarcoma 180 and mouse Lewis lung carcinoma. J Korean Cancer Assoc 23: 188-196.
  36. Guo XZ, Shao XD, Liu MP, Xu JH, Ren LN, Zhao JJ, Li HY, Wang D. 2002. Effect of bax, bcl-2 and bcl-xL on regulating apoptosis in tissues of normal liver and hepatocellular carcinoma. World J Gastroenterol 8: 1059-1062. https://doi.org/10.3748/wjg.v8.i6.1059
  37. Kim B, Song JL, Ju JH, Kang SA, Park KY. 2015. Anticancer effects of kimchi fermented for different times and with added ingredients in human HT-29 colon cancer cells. Food Sci Biotechnol 24: 629-633. https://doi.org/10.1007/s10068-015-0082-3
  38. Kim HY, Song JL, Chang HK, Kang SA, Park KY. 2014. Kimchi protects against azoxymethane/dextran sulfate sodium-induced colorectal carcinogenesis in mice. J Med Food 17: 833-841. https://doi.org/10.1089/jmf.2013.2986

Cited by

  1. Probiotic Effects of Lactobacillus plantarum Strains Isolated from Kimchi vol.45, pp.12, 2016, https://doi.org/10.3746/jkfn.2016.45.12.1717
  2. isolated from fermented durian (Tempoyak), a Malaysian traditional condiment vol.6, pp.6, 2018, https://doi.org/10.1002/fsn3.672
  3. Characterization of Lactobacillus plantarum strains isolated from black raspberry and their effect on BALB/c mice gut microbiota pp.2092-6456, 2018, https://doi.org/10.1007/s10068-018-0420-3
  4. 프로바이오틱 균주에 의한 인삼 잎 추출물 발효공정 확립 및 생성물의 품질 특성분석 vol.35, pp.4, 2016, https://doi.org/10.12925/jkocs.2018.35.4.1213
  5. Probiotic 유산균 발효에 의한 다시마(Saccharina japonica) 추출액의 항산화 활성 vol.53, pp.3, 2016, https://doi.org/10.5657/kfas.2020.0361
  6. The Microbial Diversity of Non-Korean Kimchi as Revealed by Viable Counting and Metataxonomic Sequencing vol.9, pp.11, 2016, https://doi.org/10.3390/foods9111568