The Effect of UV Intensity and Wavelength on the Photolysis of Triclosan (TCS)

광반응을 이용한 Triclosan 분해에서의 UV 광세기와 파장의 효과

  • Son, Hyun-Seok (Institute of Health & Environmental, School of Public Health, Seoul National University) ;
  • Choi, Seok-Bong (Center for Nanoscale Science and Engineering, North Dakota State University) ;
  • Khan, Eakalak (Department of Civil Engineering and Construction, North Dakota State University) ;
  • Zoh, Kyung-Duk (Institute of Health & Environmental, School of Public Health, Seoul National University)
  • Published : 2005.09.30

Abstract

We investigated the effect of hydroxyl radicals on the photolysis of triclosan (TCS), which is a potent broad-spectrum antimicrobial agent. TCS degradation during the initial reaction time of 5 min followed a pseudo-first order kinetic model ai all light intensities at a wavelength of 365 nm and at the low light intensities at a wavelength of 254 nm. The photodegradation rate significantly increased with decreasing wavelength and increasing the UV intensities. The activity of hydroxyl radicals was suppressed when methanol was used as the solvent instead of water. An increase in the photon effect was observed when the UV intensity was higher than $5.77{\times}10^{-5}$ einstein $L^{-1}min^{-1}$ at 254 nm, and lower than $1.56{\times}10^{-4}$ einstein $L^{-1}min^{-1}$ at 365 nm. The quantum yield efficiency for the photolysis of TCS was higher at 365 nm than at 254 nm among the above mentioned UV intensities. Dibenzodichloro-p-dioxin (DCDD) and dibenzo-p-dioxin were detected as intermediates at both UV intensities of $1.37{\times}10^{-4}$ and $1.56{\times}10^{-4}$ einstein $L^{-1}min^{-1}$ at 365 nm. Dichlorophenol and phenol were also detected in all cases. Based on our findings, we presented a possible mechanism of TCS photolysis.

본 연구에서는 항균제로 광범위하게 사용되는 triclosan (TCS)의 광분해시, 광분해 효율을 결정하는 OH 라디칼의 기여도를 조사하였다. TCS의 광분해 반응은 365 nm에서 모든 광세기 조건과 254 nm에서 낮은 광세기 조건들에서, 반응 초기 약 5분에서의 분해양상은 유사일차 속도반응 모델을 따르고 있었다. 또한 TCS의 광분해시 메탄올을 $H_2O$ 대신에 용매로 사용하였을 경우 OH 라디칼의 저해작용에 의하여 TCS 분해속도가 감소되었다. TCS의 광분해 속도는 파장이 감소하고, 광세기가 증가함에 따라 유의한 증가를 보였다. TCS의 광분해시 254 nm에서는 $5.77{\times}10^{-5}$ einstein $L^{-1}min^{-1}$이상의 광세기와, 365 nm에서는 $1.56{\times}10^{-4}$ einstein $L^{-1}min^{-1}$ 보다 낮은 광세기 조건에서 photon의 기여도가 증가함을 보였다. 또한 photon의 기여도가 큰 광세기 조건들에서의 TCS에 의해 이용된 quantum yield는 254 nm보다 365 nm에서 높은 효율을 보였다. TCS의 중간부산물로서는 dibenzodichloro-p-dioxin (DCDD)와 dibenzo-p-dioxin가 365 nm하의 $1.37{\times}10^{-4}$$1.56{\times}10^{-4}$ einstein $L^{-1}min^{-1}$의 광세기 조건에서 모두 검출되었다. Dichloro-phenol과 phenol 역시 광반응의 부산물로서 모든 실험에서 발견되었다. 실험 결과를 토대로 TCS의 광분해 메커니즘을 제안하였다.

Keywords

References

  1. Nature v.394 McMurry, L.M.;Oethinger, M.;Levy, S.B.
  2. Biochemistry v.42 Structure-Activity Studies of the lnhibition of FabI, the Enoyl Reductase from Eschriehia coli, by Triclosan: Kinetic Analysis of Mutant Fabls Sivaraman, S.;Zwahlen, J.;Bell, A.F.;Hedstrom, L.;Tonge, P.J.A.
  3. Environ. Sci. Technol. v.36 Occurrence and Environmental Behavior of the Bactericide Triclosan and Its Methyl Derivative in Surface Waters and in Wastewater Lindstrom, A.;Buerge, I.J.;Poiger, T.;Bergqvist, P.A.;Muller, M.D.;Buser, H.R.
  4. Chemosphere v.54 A field study of triclosan loss in river (Cibolo Creek, TX) Morrall, D.;McAvoy, D.;Schatowitz, B.;Inauen, J.;Jacob, M.;Hauk, A.;Eckhoff, W.
  5. Environ. Sci. Technol. v.36 Pharmaceutieals, Hormones, and Other Prganic Wastewater Contaminants in U.S. Streams, 1999-2000: A Natioal Reconnaissance Kolpin, D.W.;Furlong, E.T.;Meyer, M.T.;Thurman, E.M.;Zaugg, S.D.;Barber, L.B.;Buxton, H.T.
  6. Environ Sci. Technol. v.36 Ericlosan: Occurrence and Fate of a Widely Used Biocide in the Aquatic Environment: Field Measurements in Wastewater treatment plants, Surface Waters, and Lake Sediments Singer, H.;Muller, S.;Tixier, C.;Pillonel, L.
  7. Analytica Chimica Acta v.390 Electrochemical behaviour of triclosan at a screen-printed carbon electrode and its voltammetric detemunation in toothpaste and mouthrinse products Pemberton, R.M.;Hart, J.P.
  8. Environ. Sci. Technol. v.36 Phototransformation of Triclosan in Surface Waters: A Relevant Elimination Process for This Widely Used Biocide-laboratory Studies, Field Measurements, and Modeling Tixier, C.;Singer, H.P.;Canonica, S.;Muller, S.R.
  9. Analytica Chimica Acta v.525 Evidencce of 2,7/2,8-dibenzodichloro-p-dioxin as a photodegradation in water and wastewater samples Mezcua, M.;Gomez, M.J.;Ferrer, I.;Aguera, A.;Hernando, M.D.;Ferandez-Alba, A.R.
  10. Journal of Photochemistry and Photobiology A : Chemistry v.158 Photochemical conversion of triclosan to 2,8-dichlorodibenzo-p-dioxin in aqueous solution Latch, D.E.;Packer, J.L.;Arnold, W.A.;McNeill, K.
  11. J. Phys. Chem. A v.107 Abstraction of Hydrogen from Methanol by Hydroxyl Radical in Subcritieal and Supercritical water Feng, J.N.V.K.;Aki, S.;Chateauneuf, J.E.;Brennecke, J.F.
  12. J. Photochem. Photobiol. A: Chemistry v.161 Photo electrochemical study of ferrioxalate actinometry at a glassy carbon electrode Ahmed, S.
  13. Chemosphere v.55 Effect or photosensitizer diethylamine on the photodegradation of polychlorinated biphenyls Lin, Y.J.;Teng, L.S.;Lee, A.;Chen, Y.L.
  14. Photochemistry Wayne, E.C.;Wayne, R.P.
  15. J. Photochem. Photobiol. A: Chemistry v.169 Evidence for superoxide -radical anion, singlet oxygen and OH-radical intervention during the degradation of the lignin model compound (3-methoxy-4-hydroxy phenylmethylcarbinol) Raja, P.;Bozzi, A.;Mansilla, H.;Kiwi, J.
  16. Environ. Sci. Technol. v.34 Mechanismand Kinetics of the OH-Radical Intervention during Fenton Oxidation in the Presence of a Significant Amount of Radical Seavenger (CT) Kiwi, J.;Lopez, A.;Nadtochenko, V.
  17. Environ. Sci. Technol. v.38 UV photolysis of Trichloroethylene: Product Study and Kinetic Modeling Li, K.;Stefan, M.I.;Crittenden, C.J.
  18. Environ, Sci. Technol. v.26 Photochemical Mass Balance of 2,3,7,8-TeCDD in Aqueous Solution under UV Light Shows Formation of Chlorinated Dihydroxybiphenyols, and Dechlorination Products Rayne, S.;Wan, P.;Ikonomou, M.G.;Konstantinov, A.D.
  19. Environ. Sci. Technol. v.25 Oxidation of Substituted Phenols In the Environment: A QSAR Analysis of Rate Constants for Reaction with Singlet Oxygen Tratnyet, P.;Holgne, J.
  20. Environ. Sci. Technol. v.29 Transformation Kinetics of Phenols in Water: Photosensitization by Dissolved Natural Organic Material and Aromatic Ketones Canoica, S.;Jans, C.;Stemmler, K.;Hoigne, J.
  21. Environ. Sci. Technol. v.37 Photochemistry of 4-Chlorophenol on Cellulose and Silica Da Silva, J.P.;Vieira Ferreira, L.F.;Da Silva, A.M.;Oliverira, A.S.