• Title/Summary/Keyword: hydrologic response estimation

Search Result 26, Processing Time 0.031 seconds

Hydrologic Response Estimation Using Mallows' $C_L$ Statistics (Mallows의 $C_L$ 통계량을 이용한 수문응답 추정)

  • Seong, Gi-Won;Sim, Myeong-Pil
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.4
    • /
    • pp.437-445
    • /
    • 1999
  • The present paper describes the problem of hydrologic response estimation using non-parametric ridge regression method. The method adapted in this work is based on the minimization of the $C_L$ statistics, which is an estimate of the mean square prediction error. For this method, effects of using both the identity matrix and the Laplacian matrix were considered. In addition, we evaluated methods for estimating the error variance of the impulse response. As a result of analyzing synthetic and real data, a good estimation was made when the Laplacian matrix for the weighting matrix and the bias corrected estimate for the error variance were used. The method and procedure presented in present paper will play a robust and effective role on separating hydrologic response.

  • PDF

Analysis of Behavioral Properties for Hydrologic Response Function according to the Interaction between Stream Network and Hillslope (하천망과 구릉지사면 사이의 상호작용에 따른 수문학적 응답함수의 거동특성 분석)

  • Yoon, Yeo Jin;Kim, Joo Cheol
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.5
    • /
    • pp.661-669
    • /
    • 2011
  • The purpose of this study is quantitative analysis of the effects of the interactions between stream network and hillslope to hydrologic response functions. To this end general formulation of hydrologic response function is performed based on width function and grid framework. Target basins are Ipyeong and Tanbu basins. From the results of width function estimation even similar sized and closely located basins could have very different hydrologic response function. It is found out that the interactions between stream network and hillslope are essential factors of rainfall-runoff processes because their difference can make the hydrologic response function with positive skewness. The change of velocities of stream network and hillslope might influence the magnitude of peak but time to peak tends to more sensitively respond to velocities of stream network. Lag time of basin would be the result of complex interaction between drainage structures and dynamic properties of river basin.

Nonlinear Prediction of Streamflow by Applying Pattern Recognition Method (패턴 인식 방법을 적용한 하천유출의 비선형 예측)

  • 강관원;박찬영;김주환
    • Water for future
    • /
    • v.25 no.3
    • /
    • pp.105-113
    • /
    • 1992
  • The purpose of this paper is to introduce and to apply the artificial neural network theory to real hydrologic system for forecasting daily streamflows during flood periods. The hydrologic dynamic process of rainfall-runoff is identified by the iterated estimation of system parameters that are determined by adjusting the weights of the network according to the non-linear response characteristics which is formed the model. Back propagation algorithm of neural network model is applied for the estimation of system parameters with past daily rainfall and runoff series data, and streamflows are forecasted using the parameters. The forecasted results are analyzed by statistical methods for the comparison with the observed.

  • PDF

Rainfall-Runoff Analysis using SURR Model in Imjin River Basin

  • Linh, Trinh Ha;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.439-439
    • /
    • 2015
  • The temporal and spatial relationship of the weather elements such as rainfall and temperature is closely linked to the streamflow simulation, especially, to the flood forecasting problems. For the study area, Imjin river basin, which has the specific characteristics in geography with river cross operation between North and South Korea, the meteorological information in the northern area is totally deficiency, lead to the inaccuracy of streamflow estimation. In the paper, this problem is solved by using the combination of global (such as soil moisture content, land use) and local hydrologic components data such as weather data (precipitation, evapotranspiration, humidity, etc.) for the model-driven runoff (surface flow, lateral flow and groundwater flow) data in each subbasin. To compute the streamflow in Imjin river basin, this study is applied the hydrologic model SURR (Sejong Univ. Rainfall-Runoff) which is the continuous rainfall-runoff model used physical foundations, originally based on Storage Function Model (SFM) to simulate the intercourse of the soil properties, weather factors and flow value. The result indicates the spatial variation in the runoff response of the different subbasins influenced by the input data. The dependancy of runoff simulation accuracy depending on the qualities of input data and model parameters is suggested in this study. The southern region with the dense of gauges and the adequate data shows the good results of the simulated discharge. Eventually, the application of SURR model in Imjin riverbasin gives the accurate consequence in simulation, and become the subsequent runoff for prediction in the future process.

  • PDF

Evaluation of L-THIA WWW Dimet Runoff Estimation with AMC Adjustment (선행토양함수조건(AMC)을 고려한 L-THIA WWW 직접유출 모의 정확성 평가)

  • Kim, Jonggun;Park, Younshik;Jeon, Ji-Hong;Engel, Bernard A.;Ahn, Jaehun;Park, Young Kon;Kim, Ki-sung;Choi, Joongdae;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.474-481
    • /
    • 2007
  • With population growth, industrialization, and urbanization within the watershed, the hydrologic response changed dramatically, resulting in increases in peak flow with lesser time to peak and total runoff with shortened time of concentration. Infiltration is directly affected by initial soil moisture condition, which is a key element to determine runoff. Influence of the initial soil moisture condition on hydrograph analysis should be evaluated to assess land use change impacts on runoff and non-point source pollution characteristics. The Long-Term Hydrologic Impact Assessment (L-THIA) model has been widely used for the estimation of the direct runoff worldwide. The L-THIA model was applied to the Little Eagle Creek (LEC) watershed and Its estimated direct runoff values were compared with the BFLOW filtered direct runoff values by other researchers. The $R^2$ value Was 0.68 and the Nash-Sutcliffe coefficient value was 0.64. Also, the L-THIA estimates were compared with those separated using optimized $BFI_{max}$ value for the Eckhardt filter. The $R^2$ value and the Nash-Sutcliffe coefficient value were 0.66 and 0.63, respectively. Although these higher statistics could indicate that the L-THIA model is good in estimating the direct runoff reasonably well, the Antecedent Moisture Condition (AMC) was not adjusted in that study, which might be responsible for mismatches in peak flow between the L-THIA estimated and the measured peak values. In this study, the L-THIA model was run with AMC adjustment for direct runoff estimation. The $R^2$ value was 0.80 and the Nash-Sutcliffe coefficient value was 0.78 for the comparison of L-THIA simulated direct runoff with the filtered direct runoff. However there was 42.44% differences in the L-THIA estimated direct runoff and filtered direct runoff. This can be explained in that about 80% of the simulation period is classified as 'AMC I' condition, which caused lower CN values and lower direct runoff estimation. Thus, the coefficients of the equation to adjust CN II to CN I and CN III depending on AMC condition were modified to minimize adjustments impacts on runoff estimation. The $R^2$ and the Nash-Sutcliffe coefficient values increase, 0.80 and 0.80 respectively. The difference in the estimated and filtered direct runoff decreased from 42.44% to 7.99%. The results obtained in this study indicate the AMC needs to be considered for accurate direct runoff estimation using the L-THIA model. Also, more researches are needed for realistic adjustment of the AMC in the L-THIA model.

Impact Assessment of Spatial Resolution of Radar Rainfall and a Distributed Hydrologic Model on Parameter Estimation (레이더 강우 및 분포형 수문모형의 공간해상도가 매개변수 추정에 미치는 영향 평가)

  • Noh, Seong Jin;Choi, Shin Woo;Choi, Yun Seok;Kim, Kyung Tak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1443-1454
    • /
    • 2014
  • In this study, we assess impact of spatial resolution of radar rainfall and a distributed hydrologic model on parameter estimation and rainfall-runoff response. Radar data measured by S-band polarimetric radar located at Mt. Bisl in the year of 2012 are used for the comparative study. As different rainfall estimates such as R-KDP, R-Z, and R-ZDR show good agreement with ground rainfall, R-KDP are applied for rainfall-runoff modeling due to relatively high accuracy in terms of catchment averaged and gauging point rainfall. GRM (grid based rainfall-runoff model) is implemented for flood simulations at the Geumho River catchment with spatial resolutions of 200m, 500m, and 1000m. Automatic calibration is performed by PEST (model independent parameter estimation tool) to find suitable parameters for each spatial resolution. For 200m resolution, multipliers of overlandflow and soil hydraulic conductivity are estimated within stable ranges, while high variations are found from results for 500m and 1000m resolution. No tendency is found in the estimated initial soil moisture. When parameters estimated for different spatial resolution are applied for other resolutions, 200m resolution model shows higher sensitivity compared to 1000m resolution model.

Runoff Estimation Considering Dividing Watershed (유역 분할을 고려한 유출량 산정)

  • Lee, Jong-Hyeong;Yoon, Seok-Hwan
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.1 s.24
    • /
    • pp.57-66
    • /
    • 2007
  • The purpose of this study is both the variation of hydrologic topographical informations extracted by using WMS and the quantitative effect of rainfalll-runoff simulation due to dividing watershed. Miho stream basin in Geum river was selected by this study. Watershed dividing method are determined by area, channel slope and channel length. Hydrological response of divided watershed using Clark method, SCS method and Snyder method was compared with actual measured flood hydrograph. As a results, area-based watershed dividing method are particularly suitable the hydrologic applications using SCS method. This study can be used as basic data for the phase of the runoff variation in Miho stream basin.

Estimation of design floods for ungauged watersheds using a scaling-based regionalization approach (스케일링 기법 기반의 지역화를 통한 미계측 유역의 설계 홍수량 산정)

  • Kim, Jin-Guk;Kim, Jin-Young;Choi, Hong-Geun;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.9
    • /
    • pp.769-782
    • /
    • 2018
  • Estimation of design floods is typically required for hydrologic design purpose. Design floods are routinely estimated for water resources planning, safety and risk of the existing water-related structures. However, the hydrologic data, especially streamflow data for the design purposes in South Korea are still very limited, and additionally the length of streamflow data is relatively short compared to the rainfall data. Therefore, this study collected a large number design flood data and watershed characteristics (e.g. area, slope and altitude) from the national river database. We further explored to formulate a scaling approach for the estimation of design flood, which is a function of the watershed characteristics. Then, this study adopted a Hierarchical Bayesian model for evaluating both parameters and their uncertainties in the regionalization approach, which models the hydrologic response of ungauged basins using regression relationships between watershed structure and model. The proposed modeling framework was validated through ungauged watersheds. The proposed approach have better performance in terms of correlation coefficient than the existing approach which is solely based on area as a predictor. Moreover, the proposed approach can provide uncertainty associated with the model parameters to better characterize design floods at ungauged watersheds.

Development of SWAT SD-HRU Pre-processor Module for Accurate Estimation of Slope and Slope Length of Each HRU Considering Spatial Topographic Characteristics in SWAT (SWAT HRU 단위의 경사도/경사장 산정을 위한 SWAT SD-HRU 전처리 프로세서 모듈 개발)

  • Jang, Wonseok;Yoo, Dongsun;Chung, Il-moon;Kim, Namwon;Jun, Mansig;Park, Younshik;Kim, Jonggun;Lim, Kyoung-Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.3
    • /
    • pp.351-362
    • /
    • 2009
  • The Soil and Water Assessment Tool (SWAT) model, semi-distributed model, first divides the watershed into multiple subwatersheds, and then extracts the basic computation element, called the Hydrologic Response Unit (HRU). In the process of HRU generation, the spatial information of land use and soil maps within each subwatershed is lost. The SWAT model estimates the HRU topographic data based on the average slope of each subwatershed, and then use this topographic datum for all HRUs within the subwatershed. To improve the SWAT capabilities for various watershed scenarios, the Spatially Distributed-HRU (SD-HRU) pre-processor module was developed in this study to simulate site-specific topographic data. The SD-HRU was applied to the Hae-an watershed, where field slope lengths and slopes are measured for all agricultural fields. The analysis revealed that the SD-HRU pre-processor module needs to be applied in SWAT sediment simulation for accurate analysis of soil erosion and sediment behaviors. If the SD-HRU pre-processor module is not applied in SWAT runs, the other SWAT factors may be over or under estimated, resulting in errors in physical and empirical computation modules although the SWAT estimated flow and sediment values match the measured data reasonably well.

LAG TIME RELATIONS TO CATCHMENT SHAPE DESCRIPTORS AND HYDROLOGICAL RESPONSE

  • Kim, Joo-Cheol;Kim, Jae-Han
    • Water Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.91-99
    • /
    • 2005
  • One of the most important factors for estimating a flood runoff from streams is the lag time. It is well known that the lag time is affected by the morphometric properties of basin which can be expressed by catchment shape descriptors. In this paper, the notion of the geometric characteristics of an equivalent ellipse proposed by Moussa(2003) was applied for calculating the lag time of geomorphologic instantaneous unit hydrograph(GIUH) at a basin outlet. The lag time was obtained from the observed data of rainfall and runoff by using the method of moments and the procedure based on geomorphology was used for GIUH. The relationships between the basin morphometric properties and the hydrological response were discussed based on application to 3 catchments in Korea. Additionally, the shapes of equivalent ellipse were examined how they are transformed from upstream area to downstream one. As a result, the relationship between the lag time and descriptors was shown to be close, and the shape of ellipse was presented to approach a circle along the river downwards. These results may be expanded to the estimation of hydrological response of ungauged catchment.

  • PDF