DOI QR코드

DOI QR Code

Impact Assessment of Spatial Resolution of Radar Rainfall and a Distributed Hydrologic Model on Parameter Estimation

레이더 강우 및 분포형 수문모형의 공간해상도가 매개변수 추정에 미치는 영향 평가

  • Noh, Seong Jin (Korea Institute of Civil Engineering and Building Technology) ;
  • Choi, Shin Woo (Korea Institute of Civil Engineering and Building Technology) ;
  • Choi, Yun Seok (Korea Institute of Civil Engineering and Building Technology) ;
  • Kim, Kyung Tak (Korea Institute of Civil Engineering and Building Technology)
  • 노성진 (한국건설기술연구원 수자원.환경연구본부 수자원연구실) ;
  • 최신우 (한국건설기술연구원 수자원.환경연구본부 수자원연구실) ;
  • 최윤석 (한국건설기술연구원 수자원.환경연구본부 수자원연구실) ;
  • 김경탁 (한국건설기술연구원 수자원.환경연구본부 수자원연구실)
  • Received : 2014.05.14
  • Accepted : 2014.08.09
  • Published : 2014.10.01

Abstract

In this study, we assess impact of spatial resolution of radar rainfall and a distributed hydrologic model on parameter estimation and rainfall-runoff response. Radar data measured by S-band polarimetric radar located at Mt. Bisl in the year of 2012 are used for the comparative study. As different rainfall estimates such as R-KDP, R-Z, and R-ZDR show good agreement with ground rainfall, R-KDP are applied for rainfall-runoff modeling due to relatively high accuracy in terms of catchment averaged and gauging point rainfall. GRM (grid based rainfall-runoff model) is implemented for flood simulations at the Geumho River catchment with spatial resolutions of 200m, 500m, and 1000m. Automatic calibration is performed by PEST (model independent parameter estimation tool) to find suitable parameters for each spatial resolution. For 200m resolution, multipliers of overlandflow and soil hydraulic conductivity are estimated within stable ranges, while high variations are found from results for 500m and 1000m resolution. No tendency is found in the estimated initial soil moisture. When parameters estimated for different spatial resolution are applied for other resolutions, 200m resolution model shows higher sensitivity compared to 1000m resolution model.

본 연구는 레이더 강우와 분포형 수문모형의 공간해상도가 매개변수 추정 및 강우-유출 모의에 미치는 영향을 분석하였다. 레이더 강우는 비슬산 S밴드 이중편파 강우레이더에서 2012년 관측된 강우사상을 대상으로, R-KDP, R-Z, R-ZDR의 관계식에 의해 추정된 레이더 강우를 지상관측 강우와 비교하였다. 세 가지 강우 추정식에 의한 레이더 강우를 지상 관측 강우와 비교 시 유역 평균에 대해서는 모두 높은 일치도를 보였으며, 이는 지상 관측 강우에 대한 레이더 강우 보정의 영향으로 판단되었다. 그 중에서도 R-KDP에 의한 추정 강우가 비교적 높은 정확도를 보였으며, 이를 강우-유출 모형의 입력자료로 적용하였다. 강우-유출 모형으로는 GRM (grid based rainfall-runoff model) 모형을 이용하여, 낙동강 수계 금호강 유역을 대상으로, 200m, 500m, 1000m의 공간해상도로 입력자료를 구축하였다. 또한, 범용 매개변수 최적화 모형인 PEST(model independent parameter estimation tool)로 초기 포화도, 지표면 조도계수 및 토양 투수계수의 보정계수를 각 공간해상도 및 호우사상 별로 추정하였다. 매개변수 추정 결과, 200m 공간해상도 모형에서는 비교대상 강우사상에 대해 지표면 조도계수와 토양 투수계수 관련 보정계수가 비교적 안정적으로 추정되었으나, 500m, 1000m 공간해상도 모형에서는 강우사상에 따라 매개변수의 최적 추정 값의 변동이 확인되었다. 초기 포화도는 강우사상 별, 공간해상도 별로 일정한 경향을 보이지 않았다. 또한, 200m와 1000m 공간해상도에 대해 최적화된 매개변수를 다른 공간해상도에 적용한 결과, 1000m 공간해상도에 대해 보정된 매개변수를 200m 공간해상도 모형에 적용하면 첨두 홍수량이 증가하는 경향이 있었다.

Keywords

References

  1. Bae, D. H., Phoung, T. A. and Yoon, S. S. (2012). "A method to evaluate the radar rainfall accuracy for hydrological application." Journal of Korea Water Resources Association, KWRA, Vol. 42, No. 12, pp. 1039-1052 (in Korean). https://doi.org/10.3741/JKWRA.2009.42.12.1039
  2. Borga, M. (2002). "Accuracy of radar rainfall estimates for streamflow simulation." J. Hydrol, Vol. 267, pp. 26-39. https://doi.org/10.1016/S0022-1694(02)00137-3
  3. Bringi, V. N. and Chandrasekar, V. (2001). Polarimetric doppler weather radar. Principles and applications, Cambridge university press, pp. 534-540.
  4. Choi, Y. S., Choi, C. K. and Kim, K. T. (2012). "Development of a multi-site calibration module of distributed model -The case of GRM-." Journal of Korean Association of Geographic Information Studies, Korean Association of Geographic Information Studies, Vol. 15, No. 3, pp. 103-118 (in Korean). https://doi.org/10.11108/kagis.2012.15.3.103
  5. Choi, Y. S., Kim, K. T. and Shim, M. P. (2010). "Discharge estimation at ungauged catchment Using distributed rainfall-runoff model." Journal of Korea Water Resources Association, KWRA, Vol. 43, No. 4, pp. 353-365 (in Korean). https://doi.org/10.3741/JKWRA.2010.43.4.353
  6. Chung, G. H., Park, H. S., Sung, J. Y. and Kim, H. J. (2012). "Determination and evaluation of pptimal parameters in storage function method using SCE-UA." Journal of Korea Water Resources Association, KWRA, Vol. 45, No. 11, pp. 1169-1186 (in Korean). https://doi.org/10.3741/JKWRA.2012.45.11.1169
  7. Collier, C. G. and Knowles, J. M. (1986). "Accuracy of rainfall estimates by radar, part III: Application for Short-Term Flood Forecasting." J. Hydrol., Vol. 83, pp. 237-249. https://doi.org/10.1016/0022-1694(86)90154-X
  8. Doherty, J. (2003). "Ground water model calibration using pilot points and regularization." Ground Water, Vol. 41, No. 2, pp. 170-177. https://doi.org/10.1111/j.1745-6584.2003.tb02580.x
  9. Doherty, J. (2009). PEST: Model-Independent Parameter Estimation, Watermark Numerical Computing, Australia.
  10. Hong, W. Y., Park, G. A., Jung, I. K. and Kim, S. J. (2010). "Development of a grid-based daily watershed runoff model and the evaluation of its applicability." Journal of Korean Society of Civil Engineers, KSCE, Vol. 30, No. 5, pp. 459-469 (in Korean).
  11. Jeon, B. K., Lee, C. K. and Kim, Y. S. (2012). "Evaluation of rainfall measurement capability of dual polarization radar." Journal of Korean Society of Hazard Mitigation, Korean Society of Hazard Mitigation, Vol. 12, No. 2, pp. 215-224 (in Korean). https://doi.org/10.9798/KOSHAM.2012.12.2.215
  12. Kim, S. M., Benham, B. L., Brannan, K. M., Zeckoski, R. W. and Doherty, J. (2007a). "Comparison of hydrologic calibration of HSPF using automatic and manual methods." Water Resour, Res., Vol. 43, W01402, doi: 10.1029/2006WR004883.
  13. Kim, T. S., Jung, I. W., Koo, B. Y. and Bae, D. H. (2007b). "Optimization of tank model parameters using multi-objective genetic algorithm(I): Methodology and Model Formulation." Journal of Korea Water Resources Association, KWRA, Vol. 40, No. 9, pp. 677-685 (in Korean). https://doi.org/10.3741/JKWRA.2007.40.9.677
  14. Kim, Y. S., Chang, K. H., Kim, B. S. and Kim, H. S. (2011). "Decision of GIS optimum grid on applying distributed rainfall-runoff model with radar resolution." Journal of Korean Wetlands Society, Korean Wetlands Society, Vol. 13, No. 1, pp. 105-116 (in Korean).
  15. Kwak, J. W., Kim, D. G., Hong, I. P. and Kim, H. S. (2009). "A study of progressive parameter calibrations for rainfall-runoff models." Journal of Korean Wetlands Society, Korean Wetlands Society, Vol. 11, No. 2, pp. 107-121 (in Korean).
  16. Kwon, H. H., Moon, Y. I., Kim, B. S. and Yoon, S. Y. (2008). "Parameter optimization and uncertainty analysis of the NWS-PC rainfall-runoff model coupled with bayesian markov chain monte carlo inference scheme." Journal of Korean Society of Civil Engineers, KSCE, Vol. 28, No. 4, pp. 383-392 (in Korean).
  17. Lee, C. K. (2013). "Operation and application of observation network of KLTMA rainfall radar." Magazine of IEEK, IEEK, Vol. 40, No. 2, pp. 32-40 (in Korean).
  18. Ministry of Land, Transportation, and Maritime Affairs (2011). Development of rainfall estimation and analysis optimization system of the bisl-san rainfall radar (in Korean).
  19. Noh, S. J., Choi, Y., Choi, C. and Kim, K. (2013). "Parameter estimation of a distributed hydrologic model using parallel PEST:Comparison of Impacts by Radar and Ground Rainfall Estimates." Journal of Korea Water Resources Association, KWRA, Vol. 46, No. 11, pp. 1041-1052 (in Korean). https://doi.org/10.3741/JKWRA.2013.46.11.1041
  20. Yoo, C., Kim, J., Chung, J. H. and Yang, D. (2011). "Mean field bias correction of the very-short-range-forecast rainfall using the kalman filter." Journal of the Korean Society of Hazard Mitigation, Vol. 11, No. 3, pp. 17-28 (in Korean). https://doi.org/10.9798/KOSHAM.2011.11.3.017

Cited by

  1. Comparison of Quantitative Precipitation Estimation Algorithms using Dual Polarization Radar Measurements in Korea vol.14, pp.6, 2014, https://doi.org/10.9798/KOSHAM.2014.14.6.105
  2. Soil Related Parameters Assessment Comparing Runoff Analysis using Harmonized World Soil Database (HWSD) and Detailed Soil Map vol.58, pp.4, 2016, https://doi.org/10.5389/KSAE.2016.58.4.057