• Title/Summary/Keyword: hydrogen production yield

Search Result 155, Processing Time 0.025 seconds

Production of Hydrogen Gas by Thermochemical Transition of Lauan in Fixed Bed Gasification (고정층 가스화에 의한 나왕톱밥으로부터 수소제조특성)

  • Jung, Hye-Jin;Kim, Chul Ho;Son, Jae-Ek;Kim, Lae-Hyun;Shin, Hun Yong
    • Applied Chemistry for Engineering
    • /
    • v.19 no.2
    • /
    • pp.209-213
    • /
    • 2008
  • The fixed bed gasification reactor with 1 m hight and 10.2 cm diameter was utilized for the hydrogen production from biomass wastes. Lauan sawdust was used for non-catalytic and catalytic gasification reaction as a sample in the fixed bed reactor. The fixed bed temperature and catalyst are the major variables affecting the process operation. Thus, the effect of fixed bed temperature and the catalysts on gas composition were studied at the temperature range from $400^{\circ}C$ to $700^{\circ}C$. The yield of hydrogen was increased at higher temperature in the fixed bed reaction. Fractions of hydrogen, carbon monoxide and methane gas in the product gas increased when sodium carbonate ($Na_2CO_3$) and potassium carbonate ($K_2CO_3$) catalysts were used. Furthermore, sodium carbonate catalyst was more effective to obtain higher hydrogen yield compared to potassium carbonate catalyst.

Change of Microbial Communities in Fermentative Hydrogen Production at Difference Cultivation pHs (혐기성 수소생산 시 운전 pH 변화에 따른 미생물의 군집 변화)

  • Jun, Yoon-Sun;Lee, Kwan-Yong;Cho, Yoon-A;Lee, Tae-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.12
    • /
    • pp.1239-1244
    • /
    • 2008
  • In this study, PCR-DGGE was conducted to investigate the variations of microbial community according to pH conditions from pH 3 to pH 10 during anaerobic fermentation process of hydrogen production. Maximum hydrogen yield was 1.8 mol $H_2$/mol substrate at pH 5. The microbial growth rate was not proportional to the hydrogen production rate at each pH. Variations of microbial community was observed at each condition from PCR-DGGE experiment of 16s rDNA. Klebsiella was main species of the microbial community. Streptococcus and Clostridium were mainly contributed for hydrogen production.

Effect of Livestock Wastewater Addition on Hydrogen and Organic Acids Production Using Food Waste (음식물쓰레기 이용 혐기 산발효에 의한 수소 및 유기산 생산: 축산폐수 첨가 효과)

  • JANG, SUJIN;KIM, DONGHOON;LEE, MOKWON;NA, JEONGGEOL;KIM, MISUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.3
    • /
    • pp.199-205
    • /
    • 2015
  • Organic wastes such as food waste (FW), livestock wastewater (LW), and sewage sludge (SWS) can produce hydrogen ($H_2$) by anaerobic acid fermentation. Expecially, FW which has high carbohydrate content produces $H_2$ and short chain fatty acids by indigenous $H_2$ producing microorganisms without adding inoculum, however $H_2$ production rate (HPR) and yield have to be improved to use a commercially available technology. In this study, LW was mixed to FW in different ratios (on chemical oxygen demand (COD) basis) as an auxiliary substrate. The mixture of FW and LW was pretreated at pH 2 using 6 N HCl for 12 h and then fermented at $37^{\circ}C$ for 28 h. HPR of FW, 254 mL $H_2/L/h$, was increased with the addition of LW, however, mixing ratio of LW to FW was reversely related to HPR, exhibiting HPR of 737, 733, 599, and 389 mL $H_2/L/h$ at the ratio of FW:LW=10:1, 10:2, 10:3, and 10:4 on COD basis, respectively. Maximum HPR and $H_2$ production yield of 737 $H_2/L/h$ and 1.74 mol $H_2/mol$ hexoseadded were obtained respectively at the ratio of FW:LW=10:1. Butyrate was the main organic acid produced and propionate was not detected throughout the experiment.

Effects of Pretreatment Time and pH low set value on Continuous Mesophilic Hydrogen Fermentation of Food Waste (열처리 시간과 pH 하한값이 음식물쓰레기 연속 중온 수소 발효에 미치는 영향)

  • Kim, Sang-Hyoun;Lee, Chae-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.343-348
    • /
    • 2011
  • Since 2005, food waste has been separately collected and recycled to animal feed or aerobic compost in South Korea. However, the conventional recycling methods discharge process wastewater, which contain pollutant equivalent to more than 50% of food waste. Therefore, anaerobic digestion is considered as an alternative recycling method of food waste to reduce pollutant and recover renewable energy. Recent studies showed that hydrogen can be produced at acidogenic stage in two-stage anaerobic digestion. In this study, the authors investigated the effects of pretreatment time and pH low set value on continuous mesophilic hydrogen fermentation of food waste. Food waste was successfully converted to $H_2$ when heat-treated at $70^{\circ}C$ for 60 min, which was milder than previous studies using pH 12 for 1 day or $90^{\circ}C$. Organic acid production dropped operational pH below 5.0 and caused a metabolic shift from $H_2/butyrate$ fermentation to lactate fermentation. Therefore, alkaline addition for operational pH at or over 5.0 was necessary. At pH 5.3, the result showed that the maximum hydrogen productivity and yield of 1.32 $m^3/m^3$.d and 0.71 mol/mol $carbohydrate_{added}$. Hydrogen production from food waste would be an effective technology for resource recovery as well as waste treatment.

Hydrogen and Carbon Black Production by Pyrolysis of Natural Gas (천연가스 열분해에 의한 수소 및 카본 생산)

  • Yoon, Y.H.;Park, N.K.;Lee, T.J.;Chang, W.C.;Lee, B.G.;Ahn, B.S.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.2
    • /
    • pp.105-113
    • /
    • 2003
  • The pyrolysis for production of hydrogen and high quality carbon black from natural gas were studied. The reactivities in tubular reactor and FVR(free volume reactor) for the methane pyrolysis were compared, in order to prevent the formation of undesirable carbon product such as pyrocarbon, the FVR was designed. The hydrogen yield and the formation of carbon black from methane pyrolysis in this reactor were investigated at temperature range between 1443 and 1576K. From the result of TEM (transmission electron microscopy) analysis, it was confirmed that the CFC(catalytic filamentous carbon) was formed without pyrocarbon.

Effect of substrate concentration on the operating characteristics of microbial electrolysis cells (기질 농도에 따른 미생물전기분해전지의 운전 특성)

  • Hwijin Seo;Jaeil Kim;Seo Jin Ki;Yongtae Ahn
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.4
    • /
    • pp.41-49
    • /
    • 2023
  • This study examined the effect of input substrate concentration on hydrogen production of microbial electrolysis cells. To compare the performance of MEC according to the input substrate concentration, six laboratory-scale MEC reactors were operated by sequentially increasing the input substrate concentration from 2 g/L of sodium acetate, to 4 g/L, and 6 g/L. The current density, hydrogen production, and SCOD removal rate were analyzed, and energy efficiency and cathodic hydrogen recovery were calculated to compare the performance of MEC. The maximum volumetric current density was obtained at 4 g/L condition (76.3 A/m3) and it decreased to 19.0 A/m3, when the input concentration was increased to 6 g/L, which was a 75% decrease compared to the 4 g/L input condition. Maximum hydrogen production was obtained also at 4 g/L condition (47.3 ± 16.8 mL), but maximum hydrogen yield was obtained at 2 g/L input condition (1.1 L H2/g CODin). Energy efficiencies were also highest in 2 g/L condition; the lowest result was observed at 6 g/L condition. Maximum electrical energy efficiency was 76.4%, and the maximum overall energy efficiency was 39.7% at 2 g/L condition. However, when the substrate concentration increased to 6 g/L, the performance was drastically decreased. Cathodic hydrogen recovery also showed a similar tendency with energy efficiency, with the lowest concentration condition showing the best performance. It can be concluded that operating at low input substrate concentration might be better when considering not only hydrogen yield but also energy efficiency.

Characteristics of LPG fuel Reforming in Plasma Reformer for Hydrogen Production (수소 생성을 위한 플라즈마 개질기에서의 LPG 연료의 개질 특성)

  • Park, Yunhwan;Lee, Deahoon;Kim, Changup;Kang, Kernyong
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.6
    • /
    • pp.8-14
    • /
    • 2013
  • In this study, characteristics of the geometric design changes of plasma reformer for LPG fuelled vehicles were studied. To improve the yield of hydrogen, reformer 1st, and 2nd were designed. Secondary reformer compared to the primary reformer to increase the volume of the rear part of reformed gas having passed through the plasma and increased reaction time. To compare reforming results of two reformers, various experimental conditions such as, from partial oxidation to total oxidation conditions $O_2/C$ ratios, and total flow rate of 20, 30, 40, 50 lpm conditions, were varied. Results showed that with increasing $O_2/C$ ratios, LPG conversion rate increased, decreased hydrogen selectivity and hydrogen yield optimal point existed and secondary reformer 4.5 times larger than the primary reformer at the same flow rate to 4~14% increase in the yield of hydrogen.

Optimization of Hydrogen Production using Clostridium beijerinckii KCTC 1785 (Clostridium beijerinckii KCTC 1785를 이용한 수소생산 최적화 조건 탐색)

  • Kim, Jung-Kon;Nhat, Le;Kim, Seong-Jun;Kim, Si-Wouk
    • KSBB Journal
    • /
    • v.20 no.6
    • /
    • pp.401-407
    • /
    • 2005
  • Optimum culture conditions and medium composition for hydrogen production by Clostridium beijerinckii KCTC 1785 were investigated. Initial pH and temperature for growth were 7.0 and $35^{\circ}C$, respectively. Agitation accelerated the hydrogen production. Although C. beijerinckii KCTC 1785 could grow up to 6%(w/v) glucose in the medium, the optimum glucose concentration for hydrogen production was 4% and hydrogen content in the biogas was 37%(v/v). However, the economical glucose concentration for hydrogen production was 1% regarding to the residual glucose which was not used in the medium. During hydrogen fermentation, acetic and butyric acid were produced simultaneously. High concentrations of acetic(>5,000 mg/L) or butyric(>3,000 mg/L) acid inhibited hydrogen production. When pH was maintained at 5.5 in the batch fermentation, 1,728 mL of hydrogen was produced from 0.5% glucose within 15 hr. $H_2$ yield was estimated to be 1.23 mol $H_2/mol$ glucose. It was found that yeast extract or tryptose in the medium was essential for hydrogen production.

Estimation of Ultimate Methane and Hydrogen Sulfide Yields for C&D Waste and MSW Using BMP Test (건설폐기물, 생활폐기물의 용출특성 분석과 BMP test를 통한 최종메탄(CH4) 및 황화수소(H2S) 수율 산정)

  • Jung, Sukyoung;Jeong, Seongyeob;Chang, Soonwoong
    • New & Renewable Energy
    • /
    • v.10 no.1
    • /
    • pp.30-40
    • /
    • 2014
  • The main object of this study was to offer information about incoming waste in landfill and to evaluate biochemical methane and hydrogen sulfide potentials of landfill wastes. We examined brick, soil, mixed waste (C&D waste and MSW) samples for the study. The leaching experiments showed that BOD, COD and sulfate were determined in the range of 0~18,816 mg/kg, 85~21,100 mg/kg and 160~1,205 mg/kg, respectively in 6hr extraction test. An accumulated extraction tests for 140day were determined BOD 226~197,219 mg/kg, COD 436~242,588 mg/kg and Sulfate 1,090~25,140 mg/kg. Also, BMP (biochemical methane potential) tests were carried out to examine methane and hydrogen sulfide yields for the 3 different wastes. As a result, methane yield was determined to 262.68 mL $CH_4/g$ VS of MSW and 0~17.75 mL $CH_4/g$ VS in brick, soil and C&D waste. Higher hydrogen sulfide yield was observed to 0.079mL $H_2S/g$ VS in C&D waste. This result indicate that brick and soil could be sources of sulfate, and higher production of hydrogen sulfide could be odor problem and inhibitor of methane production.

Effect of Promoter with Ru and Pd on Hydrogen Production over Ni/CeO2-ZrO2 Catalyst in Steam Reforming of Methane (메탄의 수증기 개질 반응에서 Ni/CeO2-ZrO2 촉매의 수소 생산에 대한 Ru 및 Pd의 조촉매 효과)

  • In Ho Seong;Kyung Tae Cho;Jong Dae Lee
    • Applied Chemistry for Engineering
    • /
    • v.35 no.2
    • /
    • pp.134-139
    • /
    • 2024
  • In the steam reforming of methane reactions, the effect of adding noble metals Ru and Pd to a Ni-based catalyst as promoters was analyzed in terms of catalytic activity and hydrogen production. The synthesized catalysts were coated on the surface of a honeycomb-structured metal monolith to perform steam methane reforming reactions. The catalysts were characterized by XRD, TPR, and SEM, and after the reforming reaction, the gas composition was analyzed by GC to measure methane conversion, hydrogen yield, and CO selectivity. The addition of 0.5 wt% Ru improved the reduction properties of the Ni catalyst and exhibited enhanced catalytic activity with a methane conversion of 99.91%. In addition, reaction characteristics were analyzed according to various process conditions. Methane conversion of over 90% and hydrogen yield of more than 3.3 were achieved at a reaction temperature of 800 ℃, a gas hourly space velocity (GHSV) of less than 10000 h-1, and a ratio of H2O to CH4 (S/C) higher than 3.