DOI QR코드

DOI QR Code

Characteristics of LPG fuel Reforming in Plasma Reformer for Hydrogen Production

수소 생성을 위한 플라즈마 개질기에서의 LPG 연료의 개질 특성

  • Received : 2013.07.24
  • Accepted : 2013.12.02
  • Published : 2013.12.31

Abstract

In this study, characteristics of the geometric design changes of plasma reformer for LPG fuelled vehicles were studied. To improve the yield of hydrogen, reformer 1st, and 2nd were designed. Secondary reformer compared to the primary reformer to increase the volume of the rear part of reformed gas having passed through the plasma and increased reaction time. To compare reforming results of two reformers, various experimental conditions such as, from partial oxidation to total oxidation conditions $O_2/C$ ratios, and total flow rate of 20, 30, 40, 50 lpm conditions, were varied. Results showed that with increasing $O_2/C$ ratios, LPG conversion rate increased, decreased hydrogen selectivity and hydrogen yield optimal point existed and secondary reformer 4.5 times larger than the primary reformer at the same flow rate to 4~14% increase in the yield of hydrogen.

본 연구에서는 LPG자동차용으로 적용키 위한 플라즈마 개질에서 개질기 형상변화가 개질 특성에 미치는 영향에 대해 실험을 하였다. 수소 수율을 향상시키기 위해, 2차 개질기는 1차 개질기에 비해서 개질기 후단부의 부피를 증가시켜 플라즈마를 통과하는 개질가스의 반응시간을 증가시켰다. 각 개질기의 비교를 위하여 $O_2/C$ 비를 부분산화 조건에서부터 완전산화 조건까지, 총 유량은 20, 30, 40, 50 lpm으로 증가시키며 실험을 하였다. 각 개질기의 특성을 비교해본 결과, $O_2/C$ 비가 부분산화 조건에서 완전산화 조건으로 갈수록 LPG 전환율은 증가하였고, 수소 선택도는 감소하였으며, 수소 수율은 증가하다 감소하는 최적조건이 존재하였다. 개질기는 4.5배 부피가 큰 2차 개질기가 1차 개질기에 비해 동일 유량에서 수소 수율이 4~14% 증가한 결과를 얻을 수 있었다.

Keywords

References

  1. Park, J.H., Lee, J.T., Kim, S.M., Kim, J.S., Kang, D.I., Lim, Y.S., and Han, B.Y., "Estimation on the Emission Reduction of SULEV LPG Vehicles", J. KOSAE Vol. 28, NO.1, 66-76, (2012) https://doi.org/10.5572/KOSAE.2012.28.1.068
  2. Kang, K.Y., Lee, D.Y., Oh, S.M., and Kim, C.U., "Performance of an Liquid Pase LPG Injection Engine for Heavy Duty Vehicles," SAE 2001-02-1958, (2001)
  3. Kim, C.U., Lee, D.Y., Oh, S.M., Kang, K.Y., Choi, H.Y., and Min, K.D., "Enhancing Performance and Combustion of an LPG MPI Engine for Heavy Duty Vehicles," SAE 2002 International Congress and Exposition, 2002-01-0449, (2002)
  4. Tunestal, P., Christensen, M., Einewall, P., Andersson, T. et al., "Hydrogen Addition For Improved Lean Burn Capability of Slow and Fast Burning Natural Gas Combustion Chambers," SAE Technical Paper 2002-01-2686, (2002)
  5. Miyamoto, T., Hasegawa, H., Yagenji, T., Seo, T. et al., "Effects of Hydrogen Addition to Intake Mixture on Cyclic Variation of Diesel Engine," SAE Technical Paper 2011-01-1964, (2011)
  6. Lee, D.H., Kim, K.T., Cha, M.S., Song, Y.H., "Effect of excess oxygen in plasma reforming of diesel fuel," Int.J. Hydrogen Energy, Vol. 35, 4668-4675, (2010) https://doi.org/10.1016/j.ijhydene.2010.02.091
  7. Park, Y.H., Lee, D.H., Kim, C.U., Kang, K.Y., Cho Y.S., "Characteristics of LPG fuel reforming utilizing plasma reformer" J. KIGAS, Vol. 16, No. 6, 17-22, (2012) https://doi.org/10.7842/kigas.2012.16.6.17
  8. Kado, S., Urasaki, K., Sekine, Y., Fujimoto, K., Nozaki, T., Okazaki, K., "Reaction mechanism of methane activation using non-equilibrium pulsed discharge at room temperature," Fuel, Vol. 82, No 18, 2291-2297, (2003) https://doi.org/10.1016/S0016-2361(03)00163-7