Production of Hydrogen Gas by Thermochemical Transition of Lauan in Fixed Bed Gasification

고정층 가스화에 의한 나왕톱밥으로부터 수소제조특성

  • Jung, Hye-Jin (Graduate School of Energy and Environment, Seoul National University of Technology) ;
  • Kim, Chul Ho (Graduate School of Energy and Environment, Seoul National University of Technology) ;
  • Son, Jae-Ek (Graduate School of Energy and Environment, Seoul National University of Technology) ;
  • Kim, Lae-Hyun (Graduate School of Energy and Environment, Seoul National University of Technology) ;
  • Shin, Hun Yong (Department of Chemical Engineering, Seoul National University of Technology)
  • 정혜진 (서울산업대학교 에너지환경대학원 신에너지공학과) ;
  • 김철호 (서울산업대학교 에너지환경대학원 신에너지공학과) ;
  • 손재익 (서울산업대학교 에너지환경대학원 신에너지공학과) ;
  • 김래현 (서울산업대학교 에너지환경대학원 신에너지공학과) ;
  • 신헌용 (서울산업대학교 화학공학과)
  • 투고 : 2008.01.16
  • 심사 : 2008.03.03
  • 발행 : 2008.04.10

초록

The fixed bed gasification reactor with 1 m hight and 10.2 cm diameter was utilized for the hydrogen production from biomass wastes. Lauan sawdust was used for non-catalytic and catalytic gasification reaction as a sample in the fixed bed reactor. The fixed bed temperature and catalyst are the major variables affecting the process operation. Thus, the effect of fixed bed temperature and the catalysts on gas composition were studied at the temperature range from $400^{\circ}C$ to $700^{\circ}C$. The yield of hydrogen was increased at higher temperature in the fixed bed reaction. Fractions of hydrogen, carbon monoxide and methane gas in the product gas increased when sodium carbonate ($Na_2CO_3$) and potassium carbonate ($K_2CO_3$) catalysts were used. Furthermore, sodium carbonate catalyst was more effective to obtain higher hydrogen yield compared to potassium carbonate catalyst.

바이오매스 폐기물로부터 수소를 생산하기 위하여 1 m 높이와 10.2 cm의 외경을 갖는 고정층 가스화 반응기를 이용하였다. 촉매를 첨가하지 않은 나왕톱밥과 촉매를 혼합한 나왕톱밥이 시료로 사용되었다. 고정층 가스화 실험 변수로써 온도와 촉매가 공정운전에 미치는 영향을 파악하였다. 반응온도가 $400^{\circ}C$에서 $700^{\circ}C$ 범위에서 온도변화에 따른 생성기체 조성의 변화는 온도증가에 따라 수소 생성량이 증가하였으며, 수소, 일산화탄소와 메탄의 생성분율은 탄산나트륨($Na_2CO_3$)과 탄산칼륨($K_2CO_3$) 촉매 사용에 의해서 증가하였다. 또한, 탄산나트륨 촉매는 탄산칼륨 촉매에 비하여 수소생산 효율에 보다 효과적인 것으로 판명되었다.

키워드

과제정보

연구 과제번호 : 고밀도 지역의 주거 및 상업용 신재생에너지 기술 개발 : Seoul R & BD Program

연구 과제 주관 기관 : 서울특별시

참고문헌

  1. S. H. Lee, Y. G. Kim, J. C. Hong, S. J. Yoon, Y. C. Choi, and J. G. Lee, The Korean Society for New and Renewable Energy, 467 (2005)
  2. A. Friedl, E. Padouvas, H. Rotter, and K. Varmuza, Analytica Chimica Acta, 544, 191 (2005)
  3. J. Corella and S. Alvaro, Fuel Processing Technology, 86, 1044 (2005)
  4. X. Shuangning, Y. Weiming, and L. Baoming, Biomass & Bioenergy, 29, 135 (2005) https://doi.org/10.1016/j.biombioe.2005.03.002
  5. W. G. Hohenstein and L. L. Wright, Biomass and Bioenergy, 6, 161 (1994) https://doi.org/10.1016/0961-9534(94)90073-6
  6. D. L. Klass, Energy Policy, 21, 1076 (1993) https://doi.org/10.1016/0301-4215(93)90257-G
  7. J. K. Jeon, J. M. Kim, Y. K. Park, H. J. Park, S. Y. Myung, J. S. Kim, J. H. Choi, S. D. Kim, and Y. J. Eom, J. Korean Ind. Eng. Chem., 15, 901 (2004)
  8. Korea Institute of Science and Technology Information, Techno Leader's Digest (TLD), 64 (2005)
  9. L.-H. Kim, Energy Transition and Industrialization of Biomass, Ajin, Seoul (2005)
  10. S. P. Lee, H. M. Kang, and D. H. Park, KISTI In-depth Information Analysis Report: Biomass (2002)
  11. S. Y. Oh, MS Dissertation, Seoul National University of Technology, Seoul, Korea (2007)
  12. S. T. Choo, K. B. Lee, Y. D. Yoo, and Y. S. Yun, The Korea Society for Energy Engineering, 633 (2003)
  13. Nationwide Waste Generation and Disposal status (2005) (http://www.me.go.kr/)
  14. S. Christopher, C. Avenell, S. D. Ignacio, and J. G. Anthony, Fuel, 75, 1167 (1996) https://doi.org/10.1016/0016-2361(96)00072-5
  15. D. Shun, Y.-S. Ghim, S.-H. Cho, and J.-E. Son, Journal of KSWE, 10, 195 (1993)
  16. R. W. J. Westerhout, R. H. P. Valk, R. Meijer, J. A. M. Kuipers, and W. P. M. van Swaaij, Ind. Eng. Chem. Res., 36, 3360 (1997) https://doi.org/10.1021/ie960502e
  17. E. Henrich, S. Burkle, Z. I. Meza-Renken, and S. Rumpel, Journal of Analytical and Applied Pyrolysis, 49, 221 (1999) https://doi.org/10.1016/S0165-2370(98)00119-3
  18. R. E. Baron, J. H. Porter, and O. H. Hammond, in hemistry of coal utilization ed. by M. A. Elliott, 2nd. supplementary volume, John Wiley & Son, 23, 1495 (1981)