• Title/Summary/Keyword: hydrogen peroxide$(H_2O_2)$

Search Result 929, Processing Time 0.032 seconds

Anti-Oxidant Efficiency and Memchanisms of Phytochemicals from Traditional Herbal Medicine (한약재-식물성천연화학물질의 항산화 효능 및 기전)

  • Kim, Jong-Bong
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.12 no.1
    • /
    • pp.103-118
    • /
    • 2008
  • Antioxidants are compounds that protect cells against the damaging effects of reactive oxygen species (ROS). Some ROS, such as superoxide and hydrogen peroxide, are normally produced in cells as by-products of biochemical reactions or as signaling molecules. When ROS-generating reactions are activated excessively, pathological quantities of ROS are released to create an imbalance between antioxidants and ROS, called as oxidative stress. Oxidative stress, which may result in cellular damage, has been linked to cardiovascular disease, diabetes, cancer, and other degenerative conditions. In humans the first line of antioxidant defence are the antioxidant enzymes, especially SOD, glutathione peroxidase (GPX), and to a lesser extent catalase, as well as the tripeptide glutathione(GSH). These enzymes will help destroy ROS(reactive oxygen species) such as hydroxyl radical, $H_2O_2$ and lipid peroxides, while GSH protects against oxidized protein. Many herbal medicines possess antioxidant properties. Herbal antioxidants may protect against these diseases by contributing to the total antioxidant defense system of the human body. Here, many herbal medicines including Ginseng, Licorice, Ligusticum Chuanxiong, Ginkgo biloba and many others was reviewed in terms of anti-oxidant efficiency related to their components.

  • PDF

Regulation of Ascorbate Peroxidase Gene Expression in Response to Stresses and Phytohormone in Rehmannia glutinosa

  • Park Myoung Ryoul;Park Moon Hee;Yoo Nam Hee;Yu Chang Yeon;Yun Song Joong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.4
    • /
    • pp.286-290
    • /
    • 2005
  • Ascorbate peroxidase (APX) plays a crucial role in the detoxification of hydrogen peroxide. APX activity is maintained significantly higher in the paraquat­treated leaves of the paraquat-tolerant Rehmannia glutinos. This study was conducted to understand structural and regulatory characteristics of APX gene in R. glutinosa. A putative APX cDNA clone (RgAPX1) was isolated from a leaf cDNA library using a partially sequenced expressed sequence tag clone. RgAPX1 is consisted of 1148 bp nucleotides and contains an open reading frame encoding a 250 amino acid-long polypeptide. Deduced RgAPX1 amino acid sequence shares higher sequence similarity to cytosolic APXs. RgAPX1. expression was higher in the leaf than in the flower and root. Southern blot result indicates the presence of one or two RgAPX1-related genes in R. glutinosa genome. RgAPX1 transcription was affected differentially by various stresses and phytohormone. The results indicate that RgAPXl is constitutively expressed in most tissues and its expression is modulated for the immediate and efficient detoxification of $H_2O_2$ under normal and stress conditions.

Diversity in Activities of Peroxidase and Polyphenoloxidase in the Akagare or Helminthosporium-infected Rice Leaves (적고(赤枯) 및 호마엽고(胡麻葉枯) 수도엽중(水稻葉中) Peroxidase와 Polyphenoloxidase의 활성(活性))

  • Park, Hoon;Chun, Jae Kun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.6 no.1
    • /
    • pp.27-28
    • /
    • 1973
  • The activities of peroxidase and polyphenoloxidase were investigated in the rice leaves(the upper halves) diseased with Akagare or Helminthosporium oryzae. The activity of polyphenoloxidase was slightly lower than that of peroxidase in the healthy leaves but it increased 56% in the diseased leaves while peroxidase decreased 35%. It was expected that polyphenoloxidase is dominant in the oxidation of polyphenols, and hydrogen peroxide may accumulate to harmful level due to the decrease of peroxidase activity resulting in non-enzymatic oxidation of polyphenols in the diseased leaves.

  • PDF

Response/Pressure Characteristics of $H_2O_2$ Monopropellant Thruster with the Reactor Design (반응기 설계인자에 따른 과산화수소 단일추진제 추력기의 응답속도 및 압력특성)

  • An, Sung-Yong;Lee, Jeong-Sub;Lee, Jae-Won;Cho, Seung-Hwan;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.49-52
    • /
    • 2009
  • The response times of monopropellant thrusters at a pulse mode were investigated experimentally as design parameters and feed pressure conditions. Five different model thrusters as injection direction/uniformity, aspect ratio of reactor, volumes of manifold and chamber were designed. As a results, two parameters, aspect ratio and manifold volume, were directly related to response characteristics. Additionally, chugging instability at reaction chamber was observed when pressure drop across the catalyst bed was increased due to high aspect ratio or when low pressure was built at reaction chamber.

  • PDF

DNA Repair Activity of Human rpS3 is Operative to Genotoxic Damage in Bacteria

  • JANG CHANG-YOUNG;LEE JAE YUNG;KIM JOON
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.484-490
    • /
    • 2005
  • Human ribosomal protein S3 (rpS3), which has a DNA repair endonuclease activity, is a multifunctional protein. This protein is involved in DNA repair, translation, and apoptosis. In particular, rpS3 has a lyase activity, which cleaves the phosphodiester bond of damaged sites such as cyclobutane pyrimidine dimers and AP sites. Here, using deletion analysis, we identified that the repair endonuclease domain resides in the C-terminal region (165-243 aa) of rpS3. We also found that ectopic expression of GST-rpS3 in bacterial strain BL21 promoted the resistance of these cells to ultraviolet (UV) radiation and hydrogen peroxide ($H_{2}O_{2}$) treatment. The repair domain of rpS3 was sufficient to exhibit the resistance to UV irradiation and recover cell growth and viability, showing that the repair activity of rpS3 is responsible for the resistance to UV irradiation. Our study suggests that rpS3 is able to process DNA damage in bacteria via its repair domain, showing the resistance to genotoxic stress. This implies that rpS3-like activity could be operative in bacteria.

Evaluating Bleaching Effects of a Sodium Percarbonate in the Washing Process with Enzyme Containing Detergents (효소세제에 첨가한 과탄산나트륨이 세척효과에 미치는 영향)

  • 정혜원;유지혜;방종호
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.26 no.7
    • /
    • pp.1085-1092
    • /
    • 2002
  • Changes in laundering habits and the efficacy claims made for oxygen bleach added to detergents necessitate a deeper investigation into the testing of the washing efficacy of detergents and washing process. The effect of the addition of a sodium percarbonate and bleach activator TAED to an enzyme containing detergent on the soil removal and antimicrobial properties were investigated with the measuring of residual H$_2$O$_2$. The addition of sodium percarbonates to enzyme containing detergent lowered the soil removal of EMPA 116 cloth. But sodium percarbonates had greater effects on that of colored stained cloths such as EMPA 115 and artificially soiled with wine and red pepper while they were presoaked at 20$^{\circ}C$ or higher for So minutes or longer. Most of hydrogen peroxide was remained after washing. Over 99.9% of Staphylococcus aureus on the cotton cloth was removed in every washing solutions, but the cloth washed with enzyme containing detergent or detergent with oxygen bleach didn't show the antimicrobial property.

Function of NADPH Oxidases in Diabetic Nephropathy and Development of Nox Inhibitors

  • Lee, Sae Rom;An, Eun Jung;Kim, Jaesang;Bae, Yun Soo
    • Biomolecules & Therapeutics
    • /
    • v.28 no.1
    • /
    • pp.25-33
    • /
    • 2020
  • Several recent studies have reported that reactive oxygen species (ROS), superoxide anion and hydrogen peroxide (H2O2), play important roles in various cellular signaling networks. NADPH oxidase (Nox) isozymes have been shown to mediate receptor-mediated ROS generation for physiological signaling processes involved in cell growth, differentiation, apoptosis, and fibrosis. Detectable intracellular levels of ROS can be induced by the electron leakage from mitochondrial respiratory chain as well as by activation of cytochrome p450, glucose oxidase and xanthine oxidase, leading to oxidative stress. The up-regulation and the hyper-activation of NADPH oxidases (Nox) also likely contribute to oxidative stress in pathophysiologic stages. Elevation of the renal ROS level through hyperglycemia-mediated Nox activation results in the oxidative stress which induces a damage to kidney tissues, causing to diabetic nephropathy (DN). Nox inhibitors are currently being developed as the therapeutics of DN. In this review, we summarize Nox-mediated ROS generation and development of Nox inhibitors for therapeutics of DN treatment.

Chung-nam National University's Status of Research on Technology of the Next Generation Rocket Engine System (충남대학교 차세대 로켓엔진 시스템 기술 연구 현황)

  • Jang, Jee-Hun;Jeon, Jun-Su;Kim, Tae-Woan;Ko, Young-Sung;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.196-200
    • /
    • 2012
  • To acquire indigenous development abilities of a future space launcher, bi-propellant liquid rocket engines using environmentally clean propellants such as hydrogen peroxide and methane have been developed by Chungnam national university. The necessary development technologies for the future liquid rocket engines were defined and have been acquired step-by-step in advance by sub-scale liquid rocket engines. Core techniques of design/manufacture/experiments to develop a future prototype liquid rocket engine will be obtained by this study.

  • PDF

Antioxidant Effect of Annexin A-1 Induced by Low-dose Ionizing Radiation in Adipose-derived Stem Cells

  • You, Ji-Eun;Lee, Seung-Wan;Kim, Keun-Sik;Kim, Pyung-Hwan
    • Biomedical Science Letters
    • /
    • v.26 no.4
    • /
    • pp.249-255
    • /
    • 2020
  • Radiation therapy is one of the primary options for the treatment of malignant tumors. Even though it is an effective anti-cancer treatment, it can cause serious complications owing to radiation-induced damage to the normal tissue around the tumor. It was recently reported that normal stem cell response to the genotoxic stress of ionizing radiation can boost the therapeutic effectiveness of radiation by repairing damaged cells. Therefore, we focused on annexin A-1 (ANXA1), one of the genes induced by low-dose irradiation, and assessed whether it can protect adipose-derived stem cells (ADSCs) against oxidative stress-induced damage caused by low-dose irradiation and improve effectively cell survival. After confirming ANXA1 expression in ADSCs transfected with an ANXA1 expression vector, exposure to hydrogen peroxide (H2O2) was used to mimic cellular damage induced by a chronic oxidative environment to assess cell survival under oxidative conditions. ANXA1-transfected ADSCs demonstrated that increased viability compared with un-transfected cells and exhibited enhanced anti-oxidative properties. Taken together, these results suggest that ANXA1 could be used as a potential therapeutic target to improve the survival of stem cells after low-dose radiation treatment.

Alleviating Effects of Nitric Oxide on Cadmium Toxicity in White Poplar (Populus alba)

  • Semsettin Kulac;Yakup Cikili;Halil Samet;Ertugrul Filiz
    • Journal of Forest and Environmental Science
    • /
    • v.40 no.1
    • /
    • pp.43-52
    • /
    • 2024
  • Cadmium (Cd) is non-essential heavy metal that negatively affects plant metabolism. Nitric oxide (NO) is an increasingly important molecule for plant metabolism that makes signaling. In this study, it was aimed to investigate the alleviating effect of sodium nitroprusside (SNP) application as NO donor in white poplar (Populus alba) under Cd stress conditions. SNP and without SNP treatments increased the Cd accumulation in root tissue. While photosynthetic pigments (Chl a, Chl b, Chl a+b, and carotenoid) content decreased by only Cd application, SNP+Cd application decreased the rate of photosynthetic pigments reduction. When the results of Cd and Cd+SNP applications were evaluated for mineral (Fe, Zn, Mn and Cu) uptake, it was found that the positive effect of SNP was heterogeneously affected. Depending on SNP application, it was found that malondialdehyde (MDA) amount decreased in leaf in 100 µM Cd applications while hydrogen peroxide (H2O2) amount decreased in 100 and 500 µM Cd applications. When antioxidant enzyme activities were examined, it was found that catalase (CAT) and ascorbate peroxidase (APX) enzyme activities increased with 100 µM SNP applications under all Cd applications. As a result, it was found that SNP application under Cd stress generally supports physiological processes positively in white poplar, suggesting that NO molecule plays important alleviating roles in plant metabolism.