Browse > Article
http://dx.doi.org/10.4062/biomolther.2019.188

Function of NADPH Oxidases in Diabetic Nephropathy and Development of Nox Inhibitors  

Lee, Sae Rom (Department of Life Science, Ewha Womans University)
An, Eun Jung (Department of Life Science, Ewha Womans University)
Kim, Jaesang (Department of Life Science, Ewha Womans University)
Bae, Yun Soo (Department of Life Science, Ewha Womans University)
Publication Information
Biomolecules & Therapeutics / v.28, no.1, 2020 , pp. 25-33 More about this Journal
Abstract
Several recent studies have reported that reactive oxygen species (ROS), superoxide anion and hydrogen peroxide (H2O2), play important roles in various cellular signaling networks. NADPH oxidase (Nox) isozymes have been shown to mediate receptor-mediated ROS generation for physiological signaling processes involved in cell growth, differentiation, apoptosis, and fibrosis. Detectable intracellular levels of ROS can be induced by the electron leakage from mitochondrial respiratory chain as well as by activation of cytochrome p450, glucose oxidase and xanthine oxidase, leading to oxidative stress. The up-regulation and the hyper-activation of NADPH oxidases (Nox) also likely contribute to oxidative stress in pathophysiologic stages. Elevation of the renal ROS level through hyperglycemia-mediated Nox activation results in the oxidative stress which induces a damage to kidney tissues, causing to diabetic nephropathy (DN). Nox inhibitors are currently being developed as the therapeutics of DN. In this review, we summarize Nox-mediated ROS generation and development of Nox inhibitors for therapeutics of DN treatment.
Keywords
NADPH oxidase; Oxidative stress; Signal transduction; Kidney; Diabetic nephropathy; Nox inhibitor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Papadopoulou-Marketou, N., Chrousos, G. P. and Kanaka-Gantenbein, C. (2017) Diabetic nephropathy in type 1 diabetes: a review of early natural history, pathogenesis, and diagnosis. Diabetes Metab. Res. Rev. 33, doi: 10.1002/dmrr.2841.
2 Park, H. S., Park, D. and Bae, Y. S. (2006) Molecular interaction of NADPH oxidase 1 with betaPix and nox organizer 1. Biochem. Biophys. Res. Commun. 339, 985-990.   DOI
3 Reidy, K., Kang, H. M., Hostetter, T. and Susztak, K. (2014) Molecular mechanisms of diabetic kidney disease. J. Clin. Invest. 124, 2333-2340.   DOI
4 Osicka, T. M., Yu, Y., Panagiotopoulos, S., Clavant, S. P., Kiriazis, Z., Pike, R. N., Pratt, L. M., Russo, L. M., Kemp, B. E., Comper, W. D. and Jerums, G. (2000) Prevention of albuminuria by aminoguanidine or ramipril in streptozotocin-induced diabetic rats is associated with the normalization of glomerular protein kinase C. Diabetes 49, 87-93.   DOI
5 Palatini, P. (2012) Glomerular hyperfiltration: a marker of early renal damage in pre-diabetes and pre-hypertension. Nephrol. Dial. Transplant. 27, 1708-1714.   DOI
6 Said, G. (2007) Diabetic neuropathy--a review. Nat. Clin. Pract. Neurol. 3, 331-340.   DOI
7 Nishikawa, T., Edelstein, D., Du, X. L., Yamagishi, S., Matsumura, T., Kaneda, Y., Yorek, M. A., Beebe, D., Oates, P. J., Hammes, H. P., Giardino, I. and Brownlee, M. (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404, 787-790.   DOI
8 Neumann, A., Schinzel, R., Palm, D., Riederer, P. and Munch, G. (1999) High molecular weight hyaluronic acid inhibits advanced glycation endproduct-induced NF-kappaB activation and cytokine expression. FEBS Lett. 453, 283-287.   DOI
9 Molitch, M. E., DeFronzo, R. A., Franz, M. J., Keane, W. F., Mogensen, C. E., Parving, H. H., Steffes, M. W. and American Diabetes, A. (2004) Nephropathy in diabetes. Diabetes Care 27, S79-S83.   DOI
10 Rocco, M. V. and Berns, J. S. (2009) KDOQI in the era of global guidelines. Am. J. Kidney Dis. 54, 781-787.   DOI
11 Schmidt, A. M., Hori, O., Chen, J. X., Li, J. F., Crandall, J., Zhang, J., Cao, R., Yan, S. D., Brett, J. and Stern, D. (1995) Advanced glycation endproducts interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice. A potential mechanism for the accelerated vasculopathy of diabetes. J. Clin. Invest. 96, 1395-1403.   DOI
12 Schroder, K., Helmcke, I., Palfi, K., Krause, K. H., Busse, R. and Brandes, R. P. (2007) Nox1 mediates basic fibroblast growth factor-induced migration of vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 27, 1736-1743.   DOI
13 Segal, A. W., West, I., Wientjes, F., Nugent, J. H., Chavan, A. J., Haley, B., Garcia, R. C., Rosen, H. and Scrace, G. (1992) Cytochrome b-245 is a flavocytochrome containing FAD and the NADPH-binding site of the microbicidal oxidase of phagocytes. Biochem. J. 284, 781-788.   DOI
14 Sumimoto, H., Sakamoto, N., Nozaki, M., Sakaki, Y., Takeshige, K. and Minakami, S. (1992) Cytochrome b558, a component of the phagocyte NADPH oxidase, is a flavoprotein. Biochem. Biophys. Res. Commun. 186, 1368-1375.   DOI
15 Silbiger, S., Crowley, S., Shan, Z., Brownlee, M., Satriano, J. and Schlondorff, D. (1993) Nonenzymatic glycation of mesangial matrix and prolonged exposure of mesangial matrix to elevated glucose reduces collagen synthesis and proteoglycan charge. Kidney Int. 43, 853-864.   DOI
16 Singh, V. P., Bali, A., Singh, N. and Jaggi, A. S. (2014) Advanced glycation end products and diabetic complications. Korean J. Physiol. Pharmacol. 18, 1-14.   DOI
17 Suh, Y. A., Arnold, R. S., Lassegue, B., Shi, J., Xu, X., Sorescu, D., Chung, A. B., Griendling, K. K. and Lambeth, J. D. (1999) Cell transformation by the superoxide-generating oxidase Mox1. Nature 401, 79-82.   DOI
18 Yu, P., Han, W., Villar, V. A., Yang, Y., Lu, Q., Lee, H., Li, F., Quinn, M. T., Gildea, J. J., Felder, R. A. and Jose, P. A. (2014) Unique role of NADPH oxidase 5 in oxidative stress in human renal proximal tubule cells. Redox Biol. 2, 570-579.   DOI
19 Sumimoto, H. (2008) Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species. FEBS J. 275, 3984.   DOI
20 Sumimoto, H., Hata, K., Mizuki, K., Ito, T., Kage, Y., Sakaki, Y., Fukumaki, Y., Nakamura, M. and Takeshige, K. (1996) Assembly and activation of the phagocyte NADPH oxidase. Specific interaction of the N-terminal Src homology 3 domain of p47phox with p22phox is required for activation of the NADPH oxidase. J. Biol. Chem. 271, 22152-22158.   DOI
21 Tervaert, T. W., Mooyaart, A. L., Amann, K., Cohen, A. H., Cook, H. T., Drachenberg, C. B., Ferrario, F., Fogo, A. B., Haas, M., de Heer, E., Joh, K., Noel, L. H., Radhakrishnan, J., Seshan, S. V., Bajema, I. M., Bruijn, J. A. and Renal Pathology, S. (2010) Pathologic classification of diabetic nephropathy. J. Am. Soc. Nephrol. 21, 556-563.   DOI
22 Vinik, A. I., Nevoret, M. L., Casellini, C. and Parson, H. (2013) Diabetic neuropathy. Endocrinol. Metab. Clin. North Am. 42, 747-787.   DOI
23 Thallas-Bonke, V., Thorpe, S. R., Coughlan, M. T., Fukami, K., Yap, F. Y., Sourris, K. C., Penfold, S. A., Bach, L. A., Cooper, M. E. and Forbes, J. M. (2008) Inhibition of NADPH oxidase prevents advanced glycation end product-mediated damage in diabetic nephropathy through a protein kinase C-alpha-dependent pathway. Diabetes 57, 460-469.   DOI
24 Thomas, M. C., Brownlee, M., Susztak, K., Sharma, K., Jandeleit-Dahm, K. A., Zoungas, S., Rossing, P., Groop, P. H. and Cooper, M. E. (2015) Diabetic kidney disease. Nat. Rev. Dis. Primers 1, 15018.   DOI
25 Thomas, M. C., Weekes, A. J., Broadley, O. J., Cooper, M. E. and Mathew, T. H. (2006) The burden of chronic kidney disease in Australian patients with type 2 diabetes (the NEFRON study). Med. J. Aust. 185, 140-144.   DOI
26 Ueno, N., Takeya, R., Miyano, K., Kikuchi, H. and Sumimoto, H. (2005) The NADPH oxidase Nox3 constitutively produces superoxide in a p22phox-dependent manner: its regulation by oxidase organizers and activators. J. Biol. Chem. 280, 23328-23339.   DOI
27 Ueyama, T., Geiszt, M. and Leto, T. L. (2006) Involvement of Rac1 in activation of multicomponent Nox1-and Nox3-based NADPH oxidases. Mol. Cell. Biol. 26, 2160-2174.   DOI
28 Wingler, K., Wunsch, S., Kreutz, R., Rothermund, L., Paul, M. and Schmidt, H. H. (2001) Upregulation of the vascular NAD(P)H-oxidase isoforms Nox1 and Nox4 by the renin-angiotensin system in vitro and in vivo. Free Radic. Biol. Med. 31, 1456-1464.   DOI
29 Xu, Y., Ruan, S., Xie, H. and Lin, J. (2010) Role of LOX-1 in Ang II-induced oxidative functional damage in renal tubular epithelial cells. Int. J. Mol. Med. 26, 679-690.
30 Yang, Y., Zhang, Y., Cuevas, S., Villar, V. A., Escano, C., L, D. A., Yu, P., Grandy, D. K., Felder, R. A., Armando, I. and Jose, P. A. (2012) Paraoxonase 2 decreases renal reactive oxygen species production, lowers blood pressure, and mediates dopamine D2 receptor-induced inhibition of NADPH oxidase. Free Radic. Biol. Med. 53, 437-446.   DOI
31 Lassegue, B., San Martin, A. and Griendling, K. K. (2012) Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ. Res. 110, 1364-1390.   DOI
32 Banfi, B., Malgrange, B., Knisz, J., Steger, K., Dubois-Dauphin, M. and Krause, K. H. (2004a) NOX3, a superoxide-generating NADPH oxidase of the inner ear. J. Biol. Chem. 279, 46065-46072.   DOI
33 Lassegue, B., Sorescu, D., Szocs, K., Yin, Q., Akers, M., Zhang, Y., Grant, S. L., Lambeth, J. D. and Griendling, K. K. (2001) Novel gp91(phox) homologues in vascular smooth muscle cells: nox1 mediates angiotensin II-induced superoxide formation and redoxsensitive signaling pathways. Circ. Res. 88, 888-894.   DOI
34 Ameziane-El-Hassani, R., Morand, S., Boucher, J. L., Frapart, Y. M., Apostolou, D., Agnandji, D., Gnidehou, S., Ohayon, R., Noel-Hudson, M. S., Francon, J., Lalaoui, K., Virion, A. and Dupuy, C. (2005) Dual oxidase-2 has an intrinsic Ca2+-dependent H2O2-generating activity. J. Biol. Chem. 280, 30046-30054.   DOI
35 Aoyama, T., Paik, Y. H., Watanabe, S., Laleu, B., Gaggini, F., Fioraso-Cartier, L., Molango, S., Heitz, F., Merlot, C., Szyndralewiez, C., Page, P. and Brenner, D. A. (2012) Nicotinamide adenine dinucleotide phosphate oxidase in experimental liver fibrosis: GKT137831 as a novel potential therapeutic agent. Hepatology 56, 2316-2327.   DOI
36 Badal, S. S. and Danesh, F. R. (2014) New insights into molecular mechanisms of diabetic kidney disease. Am. J. Kidney Dis. 63, S63-S83.   DOI
37 Bae, Y. S., Oh, H., Rhee, S. G. and Yoo, Y. D. (2011) Regulation of reactive oxygen species generation in cell signaling. Mol. Cells 32, 491-509.   DOI
38 Banfi, B., Molnar, G., Maturana, A., Steger, K., Hegedus, B., Demaurex, N. and Krause, K. H. (2001) A Ca(2+)-activated NADPH oxidase in testis, spleen, and lymph nodes. J. Biol. Chem. 276, 37594-37601.   DOI
39 Banfi, B., Tirone, F., Durussel, I., Knisz, J., Moskwa, P., Molnar, G. Z., Krause, K. H. and Cox, J. A. (2004b) Mechanism of Ca2+ activation of the NADPH oxidase 5 (NOX5). J. Biol. Chem. 279, 18583-18591.   DOI
40 Bedard, K. and Krause, K. H. (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev. 87, 245-313.   DOI
41 Cheng, G., Ritsick, D. and Lambeth, J. D. (2004) Nox3 regulation by NOXO1, p47phox, and p67phox. J. Biol. Chem. 279, 34250-34255.   DOI
42 Block, K. and Gorin, Y. (2012) Aiding and abetting roles of NOX oxidases in cellular transformation. Nat. Rev. Cancer 12, 627-637.   DOI
43 Dutta, S. and Rittinger, K. (2010) Regulation of NOXO1 activity through reversible interactions with p22(phox) and NOXA1. PLoS ONE 5, e10478.   DOI
44 Bokoch, G. M. and Zhao, T. (2006) Regulation of the phagocyte NADPH oxidase by Rac GTPase. Antioxid. Redox Signal. 8, 1533-1548.   DOI
45 Caramori, M. L., Parks, A. and Mauer, M. (2013) Renal lesions predict progression of diabetic nephropathy in type 1 diabetes. J. Am. Soc. Nephrol. 24, 1175-1181.   DOI
46 Cha, J. J., Min, H. S., Kim, K. T., Kim, J. E., Ghee, J. Y., Kim, H. W., Lee, J. E., Han, J. Y., Lee, G., Ha, H. J., Bae, Y. S., Lee, S. R., Moon, S. H., Lee, S. C., Kim, G., Kang, Y. S. and Cha, D. R. (2017) APX-115, a first-in-class pan-NADPH oxidase (Nox) inhibitor, protects db/db mice from renal injury. Lab. Invest. 97, 419-431.   DOI
47 Chance, B., Sies, H. and Boveris, A. (1979) Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59, 527-605.   DOI
48 Cheng, G., Diebold, B. A., Hughes, Y. and Lambeth, J. D. (2006) Nox1-dependent reactive oxygen generation is regulated by Rac1. J. Biol. Chem. 281, 17718-17726.   DOI
49 Choi, H., Leto, T. L., Hunyady, L., Catt, K. J., Bae, Y. S. and Rhee, S. G. (2008) Mechanism of angiotensin II-induced superoxide production in cells reconstituted with angiotensin type 1 receptor and the components of NADPH oxidase. J. Biol. Chem. 283, 255-267.   DOI
50 Dorotea, D., Kwon, G., Lee, J. H., Saunders, E., Bae, Y. S., Moon, S. H., Lee, S. J., Cha, D. R. and Ha, H. (2018) A pan-NADPH oxidase inhibitor ameliorates kidney injury in type 1 diabetic rats. Pharmacology 102, 180-189.   DOI
51 Ko, E., Choi, H., Kim, B., Kim, M., Park, K. N., Bae, I. H., Sung, Y. K., Lee, T. R., Shin, D. W. and Bae, Y. S. (2014) Testosterone stimulates Duox1 activity through GPRC6A in skin keratinocytes. J. Biol. Chem. 289, 28835-28845.   DOI
52 Kawahara, T., Ritsick, D., Cheng, G. and Lambeth, J. D. (2005) Point mutations in the proline-rich region of p22phox are dominant inhibitors of Nox1-and Nox2-dependent reactive oxygen generation. J. Biol. Chem. 280, 31859-31869.   DOI
53 Khan, A., Petropoulos, I. N., Ponirakis, G. and Malik, R. A. (2017) Visual complications in diabetes mellitus: beyond retinopathy. Diabet. Med. 34, 478-484.   DOI
54 Kikuchi, H., Hikage, M., Miyashita, H. and Fukumoto, M. (2000) NADPH oxidase subunit, gp91(phox) homologue, preferentially expressed in human colon epithelial cells. Gene 254, 237-243.   DOI
55 Koya, D., Haneda, M., Nakagawa, H., Isshiki, K., Sato, H., Maeda, S., Sugimoto, T., Yasuda, H., Kashiwagi, A., Ways, D. K., King, G. L. and Kikkawa, R. (2000) Amelioration of accelerated diabetic mesangial expansion by treatment with a PKC beta inhibitor in diabetic db/db mice, a rodent model for type 2 diabetes. FASEB J. 14, 439-447.   DOI
56 Kudin, A. P., Bimpong-Buta, N. Y., Vielhaber, S., Elger, C. E. and Kunz, W. S. (2004) Characterization of superoxide-producing sites in isolated brain mitochondria. J. Biol. Chem. 279, 4127-4135.   DOI
57 Lambeth, J. D. and Neish, A. S. (2014) Nox enzymes and new thinking on reactive oxygen: a double-edged sword revisited. Annu. Rev. Pathol. 9, 119-145.   DOI
58 Kwon, G., Uddin, M. J., Lee, G., Jiang, S., Cho, A., Lee, J. H., Lee, S. R., Bae, Y. S., Moon, S. H., Lee, S. J., Cha, D. R. and Ha, H. (2017) A novel pan-Nox inhibitor, APX-115, protects kidney injury in streptozotocin-induced diabetic mice: possible role of peroxisomal and mitochondrial biogenesis. Oncotarget 8, 74217-74232.   DOI
59 Lal, M. A., Brismar, H., Eklof, A. C. and Aperia, A. (2002) Role of oxidative stress in advanced glycation end product-induced mesangial cell activation. Kidney Int. 61, 2006-2014.   DOI
60 Laleu, B., Gaggini, F., Orchard, M., Fioraso-Cartier, L., Cagnon, L., Houngninou-Molango, S., Gradia, A., Duboux, G., Merlot, C., Heitz, F., Szyndralewiez, C. and Page, P. (2010) First in class, potent, and orally bioavailable NADPH oxidase isoform 4 (Nox4) inhibitors for the treatment of idiopathic pulmonary fibrosis. J. Med. Chem. 53, 7715-7730.   DOI
61 Lee, J. H., Joo, J. H., Kim, J., Lim, H. J., Kim, S., Curtiss, L., Seong, J. K., Cui, W., Yabe-Nishimura, C. and Bae, Y. S. (2013) Interaction of NADPH oxidase 1 with Toll-like receptor 2 induces migration of smooth muscle cells. Cardiovasc. Res. 99, 483-493.   DOI
62 Lee, M. Y., San Martin, A., Mehta, P. K., Dikalova, A. E., Garrido, A. M., Datla, S. R., Lyons, E., Krause, K. H., Banfi, B., Lambeth, J. D., Lassegue, B. and Griendling, K. K. (2009) Mechanisms of vascular smooth muscle NADPH oxidase 1 (Nox1) contribution to injuryinduced neointimal formation. Arterioscler. Thromb. Vasc. Biol. 29, 480-487.   DOI
63 Leto, T. L., Morand, S., Hurt, D. and Ueyama, T. (2009) Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases. Antioxid. Redox Signal. 11, 2607-2619.   DOI
64 Lv, M., Chen, Z., Hu, G. and Li, Q. (2015) Therapeutic strategies of diabetic nephropathy: recent progress and future perspectives. Drug Discov. Today 20, 332-346.   DOI
65 Lyle, A. N., Deshpande, N. N., Taniyama, Y., Seidel-Rogol, B., Pounkova, L., Du, P., Papaharalambus, C., Lassegue, B. and Griendling, K. K. (2009) Poldip2, a novel regulator of Nox4 and cytoskeletal integrity in vascular smooth muscle cells. Circ. Res. 105, 249-259.   DOI
66 Gaggini, F., Laleu, B., Orchard, M., Fioraso-Cartier, L., Cagnon, L., Houngninou-Molango, S., Gradia, A., Duboux, G., Merlot, C., Heitz, F., Szyndralewiez, C. and Page, P. (2011) Design, synthesis and biological activity of original pyrazolo-pyrido-diazepine,-pyrazine and-oxazine dione derivatives as novel dual Nox4/Nox1 inhibitors. Bioorg. Med. Chem. 19, 6989-6999.   DOI
67 Mason, R. M. and Wahab, N. A. (2003) Extracellular matrix metabolism in diabetic nephropathy. J. Am. Soc. Nephrol. 14, 1358-1373.   DOI
68 Finegold, A. A., Shatwell, K. P., Segal, A. W., Klausner, R. D. and Dancis, A. (1996) Intramembrane bis-heme motif for transmembrane electron transport conserved in a yeast iron reductase and the human NADPH oxidase. J. Biol. Chem. 271, 31021-31024.   DOI
69 Forbes, J. M. and Cooper, M. E. (2013) Mechanisms of diabetic complications. Physiol. Rev. 93, 137-188.   DOI
70 Forbes, J. M., Cooper, M. E., Oldfield, M. D. and Thomas, M. C. (2003) Role of advanced glycation end products in diabetic nephropathy. J. Am. Soc. Nephrol. 14, S254-S258.   DOI
71 Groemping, Y., Lapouge, K., Smerdon, S. J. and Rittinger, K. (2003) Molecular basis of phosphorylation-induced activation of the NADPH oxidase. Cell 113, 343-355.   DOI
72 Geiszt, M., Lekstrom, K., Witta, J. and Leto, T. L. (2003) Proteins homologous to p47phox and p67phox support superoxide production by NAD(P)H oxidase 1 in colon epithelial cells. J. Biol. Chem. 278, 20006-20012.   DOI
73 Gorin, Y., Cavaglieri, R. C., Khazim, K., Lee, D. Y., Bruno, F., Thakur, S., Fanti, P., Szyndralewiez, C., Barnes, J. L., Block, K. and Abboud, H. E. (2015) Targeting NADPH oxidase with a novel dual Nox1/Nox4 inhibitor attenuates renal pathology in type 1 diabetes. Am. J. Physiol. Renal Physiol. 308, F1276-F1287.   DOI
74 Green, D. E., Murphy, T. C., Kang, B. Y., Kleinhenz, J. M., Szyndralewiez, C., Page, P., Sutliff, R. L. and Hart, C. M. (2012) The Nox4 inhibitor GKT137831 attenuates hypoxia-induced pulmonary vascular cell proliferation. Am. J. Respir. Cell Mol. Biol. 47, 718-726.   DOI
75 Jiang, F., Liu, G. S., Dusting, G. J. and Chan, E. C. (2014) NADPH oxidase-dependent redox signaling in TGF-beta-mediated fibrotic responses. Redox. Biol. 2, 267-272.   DOI
76 Heng, L. Z., Comyn, O., Peto, T., Tadros, C., Ng, E., Sivaprasad, S. and Hykin, P. G. (2013) Diabetic retinopathy: pathogenesis, clinical grading, management and future developments. Diabet. Med. 30, 640-650.   DOI
77 Hofmann, M. A., Drury, S., Fu, C., Qu, W., Taguchi, A., Lu, Y., Avila, C., Kambham, N., Bierhaus, A., Nawroth, P., Neurath, M. F., Slattery, T., Beach, D., McClary, J., Nagashima, M., Morser, J., Stern, D. and Schmidt, A. M. (1999) RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 97, 889-901.   DOI
78 Holterman, C. E., Read, N. C. and Kennedy, C. R. (2015) Nox and renal disease. Clin. Sci. (Lond.) 128, 465-481.   DOI
79 Jha, J. C., Banal, C., Chow, B. S., Cooper, M. E. and Jandeleit-Dahm, K. (2016) Diabetes and kidney disease: role of oxidative stress. Antioxid. Redox Signal. 25, 657-684.   DOI
80 Jha, J. C., Gray, S. P., Barit, D., Okabe, J., El-Osta, A., Namikoshi, T., Thallas-Bonke, V., Wingler, K., Szyndralewiez, C., Heitz, F., Touyz, R. M., Cooper, M. E., Schmidt, H. H. and Jandeleit-Dahm, K. A. (2014) Genetic targeting or pharmacologic inhibition of NADPH oxidase nox4 provides renoprotection in long-term diabetic nephropathy. J. Am. Soc. Nephrol. 25, 1237-1254.   DOI
81 Joo, J. H., Oh, H., Kim, M., An, E. J., Kim, R. K., Lee, S. Y., Kang, D. H., Kang, S. W., Keun Park, C., Kim, H., Lee, S. J., Lee, D., Seol, J. H. and Bae, Y. S. (2016) NADPH oxidase 1 activity and ROS generation are regulated by Grb2/Cbl-mediated proteasomal degradation of NoxO1 in colon cancer cells. Cancer Res. 76, 855-865.   DOI