• Title/Summary/Keyword: hydrogen peroxidase

Search Result 209, Processing Time 0.025 seconds

Scavenge of superoxide and hydrogen peroxide by bovine intact red blood cells (한우 무손상 적혈구의 superoxide 및 과산화수소 제거능력)

  • Cho, Jong-hoo;Park, Sang-youel
    • Korean Journal of Veterinary Research
    • /
    • v.38 no.2
    • /
    • pp.273-279
    • /
    • 1998
  • The ability of bovine intact red blood cells to scavenge superoxide and hydrogen peroxide by superoxide dismutase, catalase and glutathione peroxidase was investigated. Intact red cells(up to 0.4%) suspensions did not inhibit ferricytochrome c reduction by superoxide in the superoxide generating system. On the other hand, intact red cell(0.4%) suspensions almost completely inhibit ferrocytochrome c oxidation by hydrogen peroxide. The ability of intact red cells to scavenge hydrogen peroxide was mainly attributed to either membrane bound catalase or glutathione peroxidase. The scavenge of hydrogen peroxide by 0.1~0.2% intact red cells showed a trend of dependence on mainly glutathione peroxidase. However, at blood cell concentration higher than 0.3%, the process depended upon peroxidase-independent scavengers like catalase. Enhancement of ferrocytochrome c oxidation by red cells treated with aminotriazole proved that the protection against hydrogen peroxide was due to catalase, while the protection in the presence of glutathione indicated scavenging effect of glutathione peroxidase against hydrogen peroxide.

  • PDF

Influences of Peroxidase on Lysozyme Activity (Peroxidase가 Lysozyme 활성에 미치는 영향)

  • Lee, Sang-Goo;Kim, Hyung-Il;Kho, Hong-Seop
    • Journal of Oral Medicine and Pain
    • /
    • v.33 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • It is well known that many antimicrobial proteins in saliva interact with each other. The purpose of the present study was to investigate the interactions of lysozyme with peroxidase in the aspects of enzymatic activity in vitro. The interactions of lysozyme with peroxidase were examined by incubating hen egg-white lysozyme(HEWL) with bovine lactoperoxidase(bLP). The influence of peroxidase system on lysozyme was examined by subsequent addition of potassium thiocyanate and hydrogen peroxide. Lysozyme activity was determined by turbidity measurement of a Micrococcus lysodeikticus substrate suspension. Peroxidase activity was determined with an NbsSCN assay. The Wilcoxon signed rank test was used to analyze the changes of enzymatic activities compared with their controls. bLP at physiological concentrations enhanced the enzymatic activity of HEWL(P < 0.05) and its effect was dependent on the concentration of peroxidase. However, HEWL did not affect the enzymatic activity of bLP. Thiocyanate did not affect the enzymatic activity of HEWL, either. The addition of potassium thiocyanate and hydrogen peroxide did not lead to additional enhancement of the enzymatic activity of HEWL. The changes of hydrogen peroxide concentration in the peroxidase system did not affect the enzymatic activity of HEWL. Collectively, despite an in vitro nature of our study, the results of the present study provide valuable information on the interactions of lysozyme and peroxidase in the aspects of enzymatic activity in oral health care products and possibly in the oral cavity.

Decolorization of Melanin by Lignin Peroxidase from Phanerochaete chrysosporium

  • Woo, Sung-Hwan;Cho, Jeung-Suk;Lee, Baek-Seok;Kim, Eun-Ki
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.4
    • /
    • pp.256-260
    • /
    • 2004
  • Melanin was decolorized by lignin peroxidase from Phanerochaete chrysosporium. This decolorization reaction showed a Michaelis-Mentens type relationship between the decolorization rate and concentration of two substrates: melanin and hydrogen peroxide. Kinetic constants of the decolorization reaction were 0.1 OD$\sub$475//min ($V_{max}$) and 99.7 mg/L ($K_{m}$) for melanin and 0.08 OD$\sub$475//min ($V_{max}$) and 504.9 ${\mu}$M ($K_{m}$) for hydrogen peroxide, respectively. Depletion of hydrogen peroxide interrupted the decolorization reaction, indicating the essential requirement of hydrogen peroxide. Pulsewise feeding of hydrogen peroxide continued the decolorizing reaction catalyzed by lignin peroxidase. These results indicate that enzymatic decolorization of melanin has applications in the development of new cosmetic whitening agents.

A Study of Removal of Phenol by Peroxidase Extracted from Oenanthe javanica (Blume) DC (미나리 Peroxidase를 이용한 Phenol제거에 관한 연구)

  • 탁창준;최한영;신정식;나규환;이장훈
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.4
    • /
    • pp.121-126
    • /
    • 1997
  • Peroxidase as one of the organic enzyme catalyst is useful for the oxidation treatment of various aromatic compounds such as phenols. The peroxidase content of Oenanthe javanica was 24.85 unit/g-fw in leaf, 5.74 unit/g-fw in stem, and 34.69 unit/g-fw in root respectively. The crude peroxidase extracted from Oenanthe javanka can be kept under low temperature (-70$\circ$C) condition for 6 months with the maximum 1% activity reduction. The optimum conditions of removal for 100 ppm phenol was pH 6, hydrogen peroxide 3.5 mM, peroxidase activity 8 unit/ml, temperature 20$\circ$C respectively. In the wide range of concentration from 50 ppm to 750 ppm phenol reveals average 54% removal rate under the same peroxidase activity (8 unit/ml) and different amount of hydrogen peroxide proportional to phenol concentration. Especially at the concentration of 100 ppm the maximum phenol removal rate was 72%.

  • PDF

In the presence of organic solvent stability of CiP [coprinus cinereus peroxidase] (유기용매에서의 CiP [coprinus cinereus peroxidase]의 안정성)

  • Kim, Han-Sang;Cho, Dae-Haeng;Kim, Yong-Hwan
    • KSBB Journal
    • /
    • v.23 no.4
    • /
    • pp.340-344
    • /
    • 2008
  • Coprinus cinereus peroxidase (CiP) was often used as a catalyst for oxidative polymerization of a variety of phenol derivatives to produce a new class of polyphenols. Economical point of view, to know the mechanism of enzyme deactivation is significantly important because cost of enzyme is critically high. Hydrogen peroxide being used as oxidizing agent induced deactivation of peroxidase by destruction of heme structure. In the presence of hydrogen peroxide the stability of peroxidase was unexpectedly improved by adding organic solvent. Especially 2-propanol significantly improved enzyme stability among tested solvents. Radical scavenging by organic solvents may play a major role in protecting peroxidase from the oxidation of oxidizing radicals.

Synthesis of Platinum-Reduced Graphene Oxide (Pt-rGO) Nanocomposite for Selective Detection of Hydrogen Peroxide as a Peroxidase-Mimic Catalyst

  • Doyun Park;Min Young Cho;Kuan Soo Shin
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.6
    • /
    • pp.415-419
    • /
    • 2023
  • In this study, we report the one-pot synthesis of reduced graphene oxide (rGO) containing platinum nanoparticles with catalytic activity to break down hydrogen peroxide as a peroxidase-mimicking catalyst. A single reducing agent was used to reduce graphene oxide and a platinum precursor at a moderately low temperature of 70℃. The rGO was homogeneously decorated with platinum nanoparticles. The catalytic activity of Pt-rGO was investigated for the oxidation of 3,3',5,5'- tetramethylbenzidine (TMB), a peroxidase substrate, in the presence of hydrogen peroxide. The Pt-rGO coupled with glucose oxidase was also able to detect glucose at millimolar concentrations (up to 1 mM). Our results show that the Pt-rGO composite is a promising catalyst for the detection of hydrogen peroxide. This method was also applied for the detection of glucose.

Application of Acacia as an Alternative to Horseradish Peroxidase for the Determination of Hydrogen Peroxide (과산화수소 정량을 위한 서양고추냉이 과산화효소 대용 아카시아의 활용)

  • Yoon, Kil Joong
    • Applied Chemistry for Engineering
    • /
    • v.28 no.3
    • /
    • pp.369-374
    • /
    • 2017
  • The curtailment of production cost is important for the mass production of biosensors. Since horseradish peroxidase, which is a key material of enzyme electrodes for hydrogen peroxide analysis is rather expensive, this has been a limiting factor for fabricating carbon paste based enzyme electrodes. In this paper, the acacia leaf tissue as a zymogen easily obtainable in our living environment was used as an alternative to horseradish peroxidase for developing a hydrogen peroxide sensor and the electrochemical properties were evaluated. Ten or more electrochemical parameters alongside the other experimental results acquired by the potentiostatic method demonstrated that our enzyme electrodes can be used for the quantitative analysis of hydrogen peroxide. This also indicates that acacia leaves can take the place of the marketed peroxidase.

Effects of Hydrogen Peroxide Concentration on the Polymerization of p-Phenylphenol in Organic Solvent by Peroxidase

  • Yoo, Young-Je;Yeo, Joo-Sang;Park, Tae-In
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.3
    • /
    • pp.177-180
    • /
    • 1995
  • In horseradish peroxidase-catalyzing polymerization of phenol under the water/dioxane solvent system, the optimal concentration of hydrogen peroxide was found to be 10 mmol/I. Feeding of hydrogen peroxide at its optimal concentration improved the polymerization performance by reducing reaction time and increasing molecular weights. Monomer conversions and the molecular weights of the enzymatically produced polymer were in the ranges of 83.1~94.2$%$ and 58000~68000, respectively.

  • PDF

Hydrogen Peroxide Sensitive Biosensors Based on Mugwort-Peroxidase Entrapped in Carbon Pastes (탄소반죽에 쑥 과산화효소를 고정한 과산화수소 감응 바이오센서)

  • Yoon, Kil Joong
    • Applied Chemistry for Engineering
    • /
    • v.26 no.5
    • /
    • pp.624-629
    • /
    • 2015
  • A biosensor including the homogenized tissue of mugwort embedded in carbon paste, which senses hydrogen peroxide, was constructed and its electrochemical properties were validated using voltammetry. The good linearity of Hanes-Woolf plot implied that the reduction reaction of substrate was catalyzed by mugwort peroxidase at the electrode surface. Also the small value of symmetry factor, 0.28, indicated that electrochemical kinetics of the sensor is very sensitive to the change of electrode potential. Many experimental results collected above proved that the dissociation of hydrogen peroxide is dependent on the catalytic power of mugwort peroxidase qualitatively and quantitatively at the surface of the mugwort electrode. It is our firm belief that the marketed HRP can be replaced with mugwort tissue.