In the presence of organic solvent stability of CiP [coprinus cinereus peroxidase]

유기용매에서의 CiP [coprinus cinereus peroxidase]의 안정성

  • Kim, Han-Sang (Department of Chemical Engineering, Kwangwoon University) ;
  • Cho, Dae-Haeng (Department of Chemical Engineering, Kwangwoon University) ;
  • Kim, Yong-Hwan (Department of Chemical Engineering, Kwangwoon University)
  • Published : 2008.08.29

Abstract

Coprinus cinereus peroxidase (CiP) was often used as a catalyst for oxidative polymerization of a variety of phenol derivatives to produce a new class of polyphenols. Economical point of view, to know the mechanism of enzyme deactivation is significantly important because cost of enzyme is critically high. Hydrogen peroxide being used as oxidizing agent induced deactivation of peroxidase by destruction of heme structure. In the presence of hydrogen peroxide the stability of peroxidase was unexpectedly improved by adding organic solvent. Especially 2-propanol significantly improved enzyme stability among tested solvents. Radical scavenging by organic solvents may play a major role in protecting peroxidase from the oxidation of oxidizing radicals.

CiP를 이용한 유기합성은 주로 유기용매와 완충용액을 섞어서 반응을 한다. 하지만 단순히 유기용매 상에서 효소의 활성도를 측정한 것이 아니라, 과산화수소가 있을 경우에 효소의 활성도를 측정한 결과는 예상과는 다르게 순수한 완충용액에서 보다 유기용매를 포함하고 있는 것이 더 높게 나타났다. 또한 유기용매의 비율을 증가가 될수록 효소의 활성도가 더 높게 나타났으며, 특히 2-propanol이 33%가 포함이 된 경우에는 순수한 완충용액보다 효소의 활성도가 크게 증가가 되는 것을 관찰을 할 수가 있었다. 이러한 효소의 활성도가 유기용매가 포함이 된 조건에서 높게 나는 이유는 유기용매가 CiP에 의해 생성된 반응성이 높은 라디칼을 포집을 하여서, CiP의 활성 부위인 heme의 파괴를 막는 것에 크게 기여하는 것으로 판단이 되었다.

Keywords

References

  1. Kim, Y. H. and Song, B. K. (2007), Polymerization of bisphenol a using Coprinus cinereus peroxidase and ist application as a photoresist resin, J. Mol. Catalysis B 44, 149-154 https://doi.org/10.1016/j.molcatb.2006.10.004
  2. Z. Xia, T. Yoshida, and M. Funaoka. (2003), Enzymatic synthesis of polyphenols from highly phenolic lignin-based polym ers (lignophenols), Biotechnol. Lett. 25, 9-12 https://doi.org/10.1023/A:1021705426181
  3. A. Cui, A. Singh, and D. L. Kaplan, (2002), Enzyme-Based Molecular Imprinting with Metals, Biomacromolecules. 3, 1353-1358 https://doi.org/10.1021/bm025615y
  4. J. Kadota, T. Fukuoka, H. Uyama, K. Hasegawa, and S. Kobayashi, (2002), New Positive-Type Photoresists Based on Enzymatically Synthesized Polyphenols, Macromol. Rapid Commun. 25, 441-444 https://doi.org/10.1002/marc.200300045
  5. Y. H. Kim, Won, J. M. Kwon, H. S. Jeong, S. Y. Park, E. S. An, and B. K. Song, (2005), Synthesis of polycardanol from renewable source using a fungal peroxidase Coprinus cinereus, J. Molecular Catalyst B. Enzymatic 34, 33-38 https://doi.org/10.1016/j.molcatb.2005.04.005
  6. Park, J. B. and Clark D. S. (2006), Deactivation mechanism of chloroperoxidase during biotransformations, Biothenology and Bioengineering, 93(6)
  7. Grey, C. E. and Adlercreutz, P. (2007), A mass spectrometic investigation of native and oxidatively inactivated chloroperoxidase, ChemBio Chem. 8, 1055-1062 https://doi.org/10.1002/cbic.200700091
  8. Valderrama, B. and Ayala, M. and Vazquez-Duhalt, R. (2002). Suicide inactivation of peroxidase and the challenge of engineering more robust enzymes, Chem Biol. 9, 555-565 https://doi.org/10.1016/S1074-5521(02)00149-7
  9. J. S. Dordick, H. Marletta, and A. M. Klivanov (1986), Peroxidases depolymerize lignin in organic media but not in water 83, 6255-6257
  10. M. Akita, D. Tsutumi, M. Kobayashi, and H. Kise, (2001), Structural change and catalytic activity of horseradish peroxidase in oxidative polymerization of phenol, Biotechol. Biochem 65, 1581-1588 https://doi.org/10.1271/bbb.65.1581
  11. J. A. Akkara, K. J. Senecal, and D. L. Kaplan (1991). Synthesis and characterization of polymers produced by horseradish peroxidase in dioxane, J. Polym Sic A Polym Chem. 29, 1561 https://doi.org/10.1002/pola.1991.080291105
  12. H. Tonami, H. Uyama, S. Kobayashi, K. Rettig, and H. Ritter, (1999). Chemoenzymatic synthesis of a poly (hydroquinone), Marcromol Chem Phys, 200, 1998-2002 https://doi.org/10.1002/(SICI)1521-3935(19990901)200:9<1998::AID-MACP1998>3.0.CO;2-6
  13. H. Tonami, H. Uyama, S. Kobayashi, and M. Kubota, (199), Peroxidase-catalyzed oxidative polymerization of m-substitued phenol derivates, Marcromol Chem Phys. 200, 2365-2371 https://doi.org/10.1002/(SICI)1521-3935(19991001)200:10<2365::AID-MACP2365>3.0.CO;2-P
  14. K. Ryu and J. S. Dordick (1992), How do organic solvents affects peroxidase structure and function?, Biochemistry 31, 2588-2598 https://doi.org/10.1021/bi00124a020
  15. C. M. Miler, K. C. Bower, and C. Rise, (2003), Fenton's reagent degration of 2,4-dinitrotoluene in water-acetone mixture, Environ eng sci. 2, 65-69
  16. J. Marugan and D. Hufschmidt, (2006), Photonic efficiency for methanol photooxidation and hydroxyl radical generation on silica-supported TiO2 photocatalysts, Applied catalysis B 62, 201-207 https://doi.org/10.1016/j.apcatb.2005.07.013
  17. A. Brant and J. Richard (2004), Idenfication of the reactive oxygen species responsible for carbon tetrachloride degradation in moified fenton's system, Envrion sci techol. 38, 5465-5469 https://doi.org/10.1021/es0352754
  18. Y. Pocker and N. Janjic, (1987), Enzyme kinetics in solvent of increased viscosity. Dynamic aspects of carbonic anhydrase catalysis, Biochemistry 26, 2597-2606 https://doi.org/10.1021/bi00383a028