• 제목/요약/키워드: hydrogen evolution

검색결과 351건 처리시간 0.027초

Highly Active Electrocatalyst based on Ultra-low Loading of Ruthenium Supported on Titanium Carbide for Alkaline Hydrogen Evolution Reaction

  • Junghwan, Kim;Sang-Mun, Jung;Kyu-Su, Kim;Sang-Hoon, You;Byung-Jo, Lee;Yong-Tae, Kim
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권4호
    • /
    • pp.417-423
    • /
    • 2022
  • With the emerging importance of catalysts for water electrolysis, developing efficient and inexpensive electrocatalysts for water electrolysis plays a vital role in renewable hydrogen energy technology. In this study, a 1nm thickness of TiC-supported Ru catalyst for hydrogen evolution reaction (HER) has been successfully fabricated using an electron (E)-beam evaporator and thermal decomposition of gaseous CH4 in a furnace. The prepared Ru/TiC catalyst exhibited an outstanding performance for alkaline hydrogen evolution reaction with an overpotential of 55 mV at 10 mA cm-2. Furthermore, we demonstrated that the outstanding HER performance of Ru/TiC was attributed to the high surface area of the support and the metal-support interaction.

Rhodopseudomonas sphaeroides와 Clostridium butyricum의 혼합배양을 통한 수소생성의 연속발효계 (Hydrogen Evolution through Mixed Continuous Culture of Rhodopseudomonas sphaeroides and Clostridium butyricum)

  • 고영현;배무
    • 한국미생물·생명공학회지
    • /
    • 제27권1호
    • /
    • pp.46-53
    • /
    • 1999
  • The purpose of this study was to optimize the conditions of continuous mixed culture of C.butyricum and R. spaeroides K-7, which were able to produce hydrogen using biomass-dreived substrate. To investigate the possibility of continuous culture, semi-continuous culture was carried out for 20 days. In semi-continuous culture using the reactor system, the replacement rate of fresh medium was 30% of total medium volume for the highest hydrogen evolution. In continuous culture, the optimum dilution rate was determined to be 0.05$h^{-1}$. The continuous culture produced 3.1 times as compared with the hydrogen on batch culture. On the other hand, the continuous mixed culture produced 1.3~2.1 times as much as hydrogen of the continuous monoculture of C. butyricum. When 10g of glucose in the media (1l) was supplied as a carbon source on continuous culture, mixed culture of C. butyricum and R. sphaeroides K-7 increased hydrogen evolution rate. Because considerable amount of glutamate was contained in waste water of glutamate fermentation, utilization of glutamate was examined in mixed culture. As a result of examination, production of hydorgen was slightly inhibited by high concentration of glutamate, more than 20mM, on continuous monoculture of R. sphaeroides K-7. On the other hand, both on continuous monoculture of C. butyricum and on mixed culture of C. butyricum and R. sphaeroides K-7, production of hydrogen was not inhibited by high concentration of glutamate such as 100mM. Hence this suggests that high concentration of waste water can be used as good substrate for hydrogen production on monoculture of C. butyricum and mixed culture of C. butyricum and R. sphaeroides K-7.

  • PDF

Size Effects of MoS2 on Hydrogen and Oxygen Evolution Reaction

  • Ghanashyam, Gyawali;Jeong, Hae Kyung
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권1호
    • /
    • pp.120-127
    • /
    • 2022
  • Molybdenum disulfide (MoS2) has been widely used as a catalyst for the bifunctional activities of hydrogen and oxygen evolution reactions (HER and OER). Here, we investigated size dependent HER and OER performance of MoS2. The smallest size (90 nm) of MoS2 exhibits the lowest overpotential of -0.28 V at -10 mAcm-2 and 1.52 V at 300 mAcm-2 with the smallest Tafel slopes of 151 and 176 mVdec-1 for HER and OER, respectively, compared to bigger sizes (2 ㎛ and 6 ㎛) of MoS2. The better HER and OER performance is attributed to high electrochemical active surface area (6 × 10-4 cm2) with edge sites and low charge transfer resistance (18.1 Ω), confirming that the smaller MoS2 nanosheets have the better catalytic behavior.

Sievert's type 자동장치에 의한 마그네슘 수소화합물의 열분석 (Thermal Analysis of Mg Hydride by Sievert's Type Automatic Apparatus)

  • 한정섭;박경덕
    • 대한금속재료학회지
    • /
    • 제48권12호
    • /
    • pp.1123-1129
    • /
    • 2010
  • In order to apply the Sievert's type automatic apparatus to thermal analysis of hydrogen absorbing materials, the dehydrogenation of the Mg-H system was investigated. As the initial wt% of hydrogen was increased to 4.4, the peak temperature of evolution rate shifted to higher temperature. However, with the initial wt% of hydrogen higher than 4.4, peak temperature of evolution rate did not change. The peak temperatures of evolution rate obtained by automatic apparatus were almost the same as those measured by a manual apparatus. As the heating rate was increased, the peak temperatures increased; the peak temperatures for heating rates 1, 2 and 3 K/min were 664, 687 and 702 K, respectively. The activation energy for the decomposition of Mg hydride was 101 kJ/mol. The Sievert's type automatic apparatus can be successively applied to the thermal analysis of metal hydride.

Photocatal~ic Hydrogen Evolution with Platinum Loaded Cadmium-Iron-Sulfide Mixed Crystal Powders in Aque-ous Media

  • 조철래;박세진;김하석
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권8호
    • /
    • pp.805-808
    • /
    • 2000
  • Mixed crystal powders based on Cd,Fe, and S have been synthesized by varying the ratio of CdS and $FeS_2in$ order to find a suitable material usefuI for the effectivc conversion of solar energy. Hydrogen gas was evolved only with CdS/Ptby photocatal ytic reaction under white light in an aqueous 1 M sodiumsulfite solution. From electrochemical studies of semiconductor electrodes. itwas shown that the onset potential shifted to the positive direction and that the bandgap energy also decreased as the molar ratio of Fe increased. A hydrogen evolution mechanism in terms of the conduction band potential and hydrogen evolution potential is proposed.

Rhodopseudomonas sphaeroides K-7 의 질소고정 효소 의존성 수소생성에 관한 연구 (A Study on Nitrogenase - Mediated Evolution of Molecular Hydrogen in Rhodopseudomonas sphaeroides K-7)

  • Lee, Jeong-Kug;Moo Bae
    • 한국미생물·생명공학회지
    • /
    • 제11권3호
    • /
    • pp.211-216
    • /
    • 1983
  • R. sphaeroides K- 7에 의한 수소생성과 질소고정효소(nitrogenase)와의 연관성을 조사한 결과 수소생성은 질소고정효소에 의해 이루어지는 것으로 나타났다. 또한 수소생성은 수소효소(hydrogenase)와 무관하며 박테리오클로로필의 농도와도 무관한 것으로 나타났다. 글루타민산이 in vivo에서 질소고정효소의 활성도를 조절하는데 중요한 역할을 할 수 있는 것으로 나타났으며 질소개스를 이용해 키운 세균을 글루타민산 존재하로 옮겼을때 보다 큰 정도의 수소생성능 및 질소고정효소 활성도가 나타났다.

  • PDF

Rhodopseudomonas sp. KCTC 1437에 의한 포도당으로부터의 수소 생성 (Evolution of Molecular Hydrogen from Glucose by Rhodopseudomonas sp. KCTC 1437)

  • Woo, Seung-Jin;Lee, Jeong-Kug;Kwon, Tae-Jong;Kho, Yung-Hee
    • 한국미생물·생명공학회지
    • /
    • 제13권3호
    • /
    • pp.257-263
    • /
    • 1985
  • Rhodopseudomonas sp. KCTC 1437은 글루타민산이 질소원으로 존재할 때, 포도당으로부터 질소고 정효소 (nitrogenase)에 의해 효율적으로 수소를 생성하였다. in vivo에서 질소고정 효소의 활성도를 조사해 본 결과, 암모니아 이온의 제한 농도에서 키운 균체가 다른 질소원에서 키운 균체보다 더 큰 정도로 수소를 글루타민산 존재하에서 포도당으로부터 생성하였다. 이 균주는 또한 수소 생성의 억제물질 및 조건으로 알려져 있는 암모니아 이온의 높은 농도와 암조건에서 높은 정도로 수소를 생성했는데 이것은 수소효소 (hydrogenase)의 일종인 포르믹산 수소분해효소 (formic hydrogenlyase)에 의한 것이라 고려된다.

  • PDF

Platinum Decoration of a 3D Oxidized Graphitic Carbon Nitride/Graphene Aerogel for Enhanced Visible-Light Photocatalytic Hydrogen Evolution

  • Thi Kieu Oanh Nguyen;Thanh Truong Dang;Tahereh Mahvelati-Shamsabadi;Jin Suk Chung
    • Korean Chemical Engineering Research
    • /
    • 제61권4호
    • /
    • pp.627-634
    • /
    • 2023
  • Graphitic carbon nitride (g-C3N4) has attracted considerable attention since its discovery for its catalysis of water splitting to hydrogen and oxygen under visible light irradiation. However, pristine g-C3N4 confers only low photocatalytic efficiency and requires surface cocatalysts to reach moderate activity due to a lack of accessible surface active sites. Inspired by the high specific surface area and superior electron transfer of graphene, we developed a strongly coupled binary structure of graphene and g-C3N4 aerogel with 3D porous skeleton. The as-prepared 3D structure photocatalysts achieve a high surface area that favors efficient photogenerated charge separation and transfer, enhances the light-harvesting efficiency, and significantly improves the photocatalytic hydrogen evolution rate as well. The photocatalyst performance is observed to be optimized at the ratio 3:7 (g-C3N4:GO), leading to photocatalytic H2 evolution of 16125.1 mmol. g-1. h-1 under visible light irradiation, more than 161 times higher than the rate achieved by bulk g-C3N4.

수소 생성 광합성 세균 Rhodobacter sphaeroides KS 56 분리 (Isolation of Hydrogen Evolution Photosynthetic Bacteria Rhodobacter sphaeroides KS 56)

  • 이은숙;권애란
    • 한국식품영양학회지
    • /
    • 제10권4호
    • /
    • pp.549-552
    • /
    • 1997
  • 혐기성 광조건의 낮은 농도의 NH4+ 존재하에서 포도당으로부터 많은 양의 수소를 생성하는 홍색 비유황 광합성 세균을 수계혐기층으로부터 분리하였다. 이 세균은 형태적, 배양적, 생리적 특성에 따라 Rhodobacter sphaeroides KS 56으로 동정되었다.

  • PDF

열처리된 친수성 카본 페이퍼 전극의 전기 물 분해 특성 (Electrode Properties for Water Electrolysis of Hydrophilic Carbon Paper with Thermal Anneal)

  • 유일한;서형탁
    • 한국재료학회지
    • /
    • 제26권5호
    • /
    • pp.241-245
    • /
    • 2016
  • Hydrogen is considered a potential future energy source. Among other applications of hydrogen, hydrogen-rich water is emerging as a new health care product in industrial areas. Water electrolysis is typically used to generate a hydrogen rich water system. We annealed 10AA carbon paper in air to use it as an electrode of a hydrogen rich water generator. Driven by annealing, structural changes of the carbon paper were identified by secondary electron microscope analysis. Depending on the various annealing temperatures, changes of the hydrophilic characteristics were demonstrated. The crystal structures of pristine and heat-treated carbon paper were characterized by X-ray diffraction. Improvement of the efficiency of the electrochemical oxygen evolution reaction was measured via linear voltammetry. The optimized annealing temperature of 10AA carbon paper showed the possibility of using this material as an effective hydrogen rich water generator.