Browse > Article
http://dx.doi.org/10.3365/KJMM.2010.48.12.1123

Thermal Analysis of Mg Hydride by Sievert's Type Automatic Apparatus  

Han, Jeong Seb (Department of Metallurgical Engineering, Dong-A University)
Park, Kyung Duck (Department of Metallurgical Engineering, Dong-A University)
Publication Information
Korean Journal of Metals and Materials / v.48, no.12, 2010 , pp. 1123-1129 More about this Journal
Abstract
In order to apply the Sievert's type automatic apparatus to thermal analysis of hydrogen absorbing materials, the dehydrogenation of the Mg-H system was investigated. As the initial wt% of hydrogen was increased to 4.4, the peak temperature of evolution rate shifted to higher temperature. However, with the initial wt% of hydrogen higher than 4.4, peak temperature of evolution rate did not change. The peak temperatures of evolution rate obtained by automatic apparatus were almost the same as those measured by a manual apparatus. As the heating rate was increased, the peak temperatures increased; the peak temperatures for heating rates 1, 2 and 3 K/min were 664, 687 and 702 K, respectively. The activation energy for the decomposition of Mg hydride was 101 kJ/mol. The Sievert's type automatic apparatus can be successively applied to the thermal analysis of metal hydride.
Keywords
hydrogen absorbing materials; powder processing; decomposition; thermal analysis; magnesium hydride;
Citations & Related Records

Times Cited By SCOPUS : 5
연도 인용수 순위
1 Y.-S. Lee and S.-D. Kim, Prospectives of Industrial Chemisty 9, 4 (2006).
2 Billur Sakintuna, Farida Lamari-Darkrim, and Michael Hirscher, Int. J. Hydrogen Eenergy 32, 1121 (2007).   DOI   ScienceOn
3 Sjoerd Bakker, Int. J. Hydrogen Eenergy 35, 6784 (2010).   DOI   ScienceOn
4 I. P. Jain, Chhagan Lal, and Ankur Jain, Int. J. Hydrogen Eenergy 35, 5133 (2010).   DOI   ScienceOn
5 R. Burtovyy, E. Utzig, and M. Tkacz, Thermochim. Acta 363, 157 (2000).   DOI   ScienceOn
6 Maximilian Fichtner, Jens Engel, Olaf Fuhr, Oliver Kircher, and Oliver Rubner, Mater Sci. Eng. B 108, 42 (2004).   DOI   ScienceOn
7 M. Tanniru, H.-Y. Tien, and F. Ebrahimi, Scr. Materialia 63, 58 (2010).   DOI   ScienceOn
8 P. Wang, H. F. Zhang, B. Z. Ding, and Z. Q. Hu, J. Alloys and Compounds 313, 209 (2000).   DOI   ScienceOn
9 W. N. Yang, C. X. Shang, and Z. X. Guo, Int. J. Hydrogen Eenergy 35, 4534 (2010).   DOI   ScienceOn
10 K. Bohmhammel, B. Christ, and G. Wolf, Thermochim. Acta 310, 167 (1998).   DOI   ScienceOn
11 H. Gasan, N. Aydinbeyli, O. N. Celik, and Y. M. Yaman, J. Alloys and Compounds 487, 724 (2009).   DOI   ScienceOn
12 Shu-Sheng Liu, Yao Zhang, Li-Xian Sun, Jian Zhang, Jun- Ning Zhao, Fen Xu, and Feng-Lei Huang, Int. J. Hydrogen Eenergy 35, 4554 (2010).   DOI   ScienceOn
13 J. F. Fernandez and C. R. Sanchez, J. Alloys and Compounds 356-357, 348 (2003).   DOI   ScienceOn
14 Akito Takasaki and Yoshio Furuya, Scr. Materialia 40, 595 (1999).   DOI   ScienceOn
15 Valentin D. Dobrovolsky, Olga G. Ershova, Yuriy M. Solonin, Raisa A. Morozova, and Eugenia M. Severyanina, J. Alloys and Compounds 490, 68 (2010).   DOI   ScienceOn
16 O. G. Ershova, V. D. Dobrovolsky, Yu. M. Solonin, and O. Yu. Khyzhun, J. Alloys and Compounds 509, 128 (2011).   DOI   ScienceOn
17 B. Vigeholm, J. Kjoiier, B. Larson, and A. S. Pedersen, Hydrogen Energy Progress V, ed. by T.N.Veziroglu and J. B. Taylor, Pergamon Press, 1455 (1984).
18 T. Schober, Met. Trans. 12A, 951 (1981).
19 J. F. Fernandez and C. R. Sanchez, J. Alloys and Compounds 356-357, 348 (2003).   DOI   ScienceOn
20 E. Evard, I. Gabis, and V. A. Yartys, Int. J. Hydrogen Energy 35, 9060 (2010).   DOI   ScienceOn
21 J. Huot, G. Liang, S. Boily, A. Van Neste, and R. Schulz, J. Alloys and Compounds 293-295, 495 (1999).   DOI   ScienceOn
22 J. S. Han, M. Pezat, and Lee Jai-Young, J Less-Comm Met 130, 395 (1987).   DOI   ScienceOn