Browse > Article
http://dx.doi.org/10.3740/MRSK.2016.26.5.241

Electrode Properties for Water Electrolysis of Hydrophilic Carbon Paper with Thermal Anneal  

Yoo, Il-Han (Department of Energy Systems Research and Department of Materials Science & Engineering, Ajou University)
Seo, Hyungtak (Department of Energy Systems Research and Department of Materials Science & Engineering, Ajou University)
Publication Information
Korean Journal of Materials Research / v.26, no.5, 2016 , pp. 241-245 More about this Journal
Abstract
Hydrogen is considered a potential future energy source. Among other applications of hydrogen, hydrogen-rich water is emerging as a new health care product in industrial areas. Water electrolysis is typically used to generate a hydrogen rich water system. We annealed 10AA carbon paper in air to use it as an electrode of a hydrogen rich water generator. Driven by annealing, structural changes of the carbon paper were identified by secondary electron microscope analysis. Depending on the various annealing temperatures, changes of the hydrophilic characteristics were demonstrated. The crystal structures of pristine and heat-treated carbon paper were characterized by X-ray diffraction. Improvement of the efficiency of the electrochemical oxygen evolution reaction was measured via linear voltammetry. The optimized annealing temperature of 10AA carbon paper showed the possibility of using this material as an effective hydrogen rich water generator.
Keywords
carbon paper; water electrolysis; carbon electrode; oxygen evolution reaction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 X. Chen, S. Shen, L. Guo and S. S. Mao, Chem. Rev., 110, 6503 (2010).   DOI
2 H. Gu, Z. Wang and Y. Hu, Sensors, 12, 5517 (2012).   DOI
3 B. Rausch, M. D. Symes and L. Cronin, J. Am. Chem. Soc., 135, 13656 (2013).   DOI
4 M. Gong, W. Zhou, M.-C. Tsai, J. Zhou, M. Guan, M.-C. Lin, B. Zhang, Y. Hu, D.-Y. Wang, J. Yang, S. J. Pennycook, B.-J. Hwang and H. Dai, Nat. Commun., 5 4695 (2014).   DOI
5 G. W. Crabtree, M. S. Dresselhaus and M. V. Buchanan, Phys. Today, 57, 39 (2004).   DOI
6 I. Ohsawa, M. Ishikawa, K. Takahashi, M. Watanabe, K. Nishimaki, K. Yamagata, K.-i. Katsura, Y. Katayama, S. Asoh and S. Ohta, Nat. Med., 13, 688 (2007).   DOI
7 S. Ohta, Pharmacol. Therapeut., 144, 1-11 (2014).   DOI
8 Z. D. Wei, M. B. Ji, S. G. Chen, Y. Liu, C. X. Sun, G. Z. Yin, P. K. Shen and S. H. Chan, Electrochim. Acta, 52, 3323 (2007).   DOI
9 P. K. Dubey, A. S. K. Sinha, S. Talapatra, N. Koratkar, P. M. Ajayan and O. N. Srivastava, Int. J. Hydrogen Energy, 35, 3945 (2010).   DOI
10 P. P. Prosini, A. Pozio, S. Botti and R. Ciardi, J. Power Sourc., 118, 265 (2003).   DOI
11 H. Fei, R. Ye, G. Ye, Y. Gong, Z. Peng, X. Fan, E. L. G. Samuel, P. M. Ajayan and J. M. Tour, ACS Nano, 8, 10837 (2014).   DOI
12 S. C. Barton, Y. Sun, B. Chandra, S. White and J. Hone, Electrochem. Solid-State Lett., 10, B96 (2007).   DOI
13 A. Tamayol, F. McGregor and M. Bahrami, J. Power Sourc., 204, 94 (2012).   DOI
14 D. Reyter, D. Belanger and L. Roue, Water Res., 44, 1918 (2010).   DOI
15 K. J. Kim, Y.-J. Kim, J.-H. Kim and M.-S. Park, Mater. Chem. Phys., 131, 547 (2011).   DOI
16 L. Dobiasova, V. Stary, P. Glogar and V. Valvoda, Carbon, 37, 421 (1999).   DOI