Browse > Article
http://dx.doi.org/10.33961/jecst.2021.00710

Size Effects of MoS2 on Hydrogen and Oxygen Evolution Reaction  

Ghanashyam, Gyawali (Department of Physics, Institute of Natural Sciences, Daegu University)
Jeong, Hae Kyung (Department of Physics, Institute of Natural Sciences, Daegu University)
Publication Information
Journal of Electrochemical Science and Technology / v.13, no.1, 2022 , pp. 120-127 More about this Journal
Abstract
Molybdenum disulfide (MoS2) has been widely used as a catalyst for the bifunctional activities of hydrogen and oxygen evolution reactions (HER and OER). Here, we investigated size dependent HER and OER performance of MoS2. The smallest size (90 nm) of MoS2 exhibits the lowest overpotential of -0.28 V at -10 mAcm-2 and 1.52 V at 300 mAcm-2 with the smallest Tafel slopes of 151 and 176 mVdec-1 for HER and OER, respectively, compared to bigger sizes (2 ㎛ and 6 ㎛) of MoS2. The better HER and OER performance is attributed to high electrochemical active surface area (6 × 10-4 cm2) with edge sites and low charge transfer resistance (18.1 Ω), confirming that the smaller MoS2 nanosheets have the better catalytic behavior.
Keywords
Molybdenum Disulfide; Hydrogen Evolution Reaction; Oxygen Evolution Reaction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Z. Zhou, Y. Liu, J. Zhang, H. Pang and G. Zhu, Electrochem. Commun., 2020, 121, 106871.   DOI
2 X. Cao, D. Jia, D. Li, L. Cui and J. Liu, Chem. Eng. J., 2018, 348, 310-318.   DOI
3 T. Wang, D. Gao, J. Zhuo, Z. Zhu, P. Papakonstantinou, Particles, Chem Eur. J., 2013, 19(36), 11939-11948.   DOI
4 K. P. Aryal, H. K. Jeong, Chem. Phys. Lett., 2019, 730, 306-311.   DOI
5 L. Chen, T. Ji, L. Mu and Z. Zhu, Carbon, 2017, 111, 839-848.   DOI
6 W. Li, J. Chen, Z. Xiao, J. Xing, C. Yang, et al., New Carbon Mater., 2020, 35, 540-546.   DOI
7 J. J. Zhao, X. Han, K. Tao, Q. Li, Y. L. Li, et al., Chem. Eng. J., 2018, 354, 875-884.   DOI
8 X. Liu, J. Z. Zhang, K. J. Huang and P. Hao, Chem. Eng. J., 2016, 302, 437-445.   DOI
9 X. Xu, F. Song and X. Hu, Nat. commun., 2016, 7(1), 12324.   DOI
10 T. Niyitanga, P. E. Evans, T. Ekanayake, P. A. Dowben and H. K. Jeong, J. Electroanal. Chem., 2019, 845, 39-47.   DOI
11 P. H. Joo, J. Cheng and K. Yang, Phys. Chem. Chem. Phys., 2017, 19(44), 29927.   DOI
12 B. Seo, G. Y. Jung, Y. J. Sa, H. Y. Jeong, J. Y. Cheon, et al., ACS Nano, 2015, 9(4), 3728-3739.   DOI
13 K. Tao, Y. Gong, Q. Zhou and J. Lin, Electrochim. Acta, 2018, 286, 65-76.   DOI
14 G. P. Ojha, A. Muthurasu, A. P Tiwari, B. Pant, K. Chhetri, et al., Chem. Eng. J., 2020, 399, 125532.   DOI
15 B. Dahal, T. Mukhiya, G. P. Ojha, K. Chhetri, A. P. Tiwari, et al., Chem. Eng. J., 2020, 387, 124028.   DOI
16 G. Ghanashyam and H. K. Jeong, J. Energy storage, 2019, 26, 100923.   DOI
17 B. Li, L. Jiang, X. Li, P. Ran, P. Zuo, et al., Sci. Rep., 2017, 7(1), 1-12.   DOI
18 B. Li, R. Xing, S. V. Mohite, S. S. Latthe, A. Fujishima, et al., J. Power Sources, 2019, 436, 226862.   DOI
19 S. Liu, B. Li, S. V. Mohite, P. Devaraji, L. Mao, et al., Int. J. Hydrog. Energy, 2020, 45(55), 29929-29937.   DOI
20 T. Niyitanga and H. K. Jeong, J. Electroanal. Chem., 2019, 849, 113383.   DOI
21 D. N. Sangeetha, D. K. Bhat, S. S. Kumar and M. Selvakumar, Int. J. Hydrog. Energy, 2020, 45(13), 7788-7800.   DOI
22 J. Zhao, W. Li, S. Wu, F. Xu, J. Du, et al., Electrochimica Acta, 2020, 337, 135850.   DOI
23 G. Ghanashyam and H. K. Jeong, J. Energy Storage, 2021, 33, 102150.   DOI
24 G. Ghanashyam and H. K. Jeong, J. Energy storage, 2020, 30, 101545.   DOI
25 P. Zhang and H. He, J. Alloys and Compd., 2020, 826, 153993.   DOI
26 X. Wang, L. Li, Z. Wang, Z. Wu, M. Zhu, et al., Electrochim. Acta, 2020, 353, 136527.   DOI
27 A. P. Murthy, J. Theerthagiri and J. Madhavan, ACS Appl. Energy Mater., 2018, 1(4), 1512-1521.   DOI
28 S. Song, Y. Wang, W. Li, P. Tian, S. Zhou, et al., Electrochim. Acta, 2020, 332, 135454.   DOI