• 제목/요약/키워드: hydrogen energy

검색결과 4,231건 처리시간 0.028초

백금 촉매를 이용한 수소버너의 모델 실험 (Model Experiment of Hydrogen Burner Utilizing Platinum Catalyst)

  • 안영석;김진원;김태영;김포천;오병수;류민웅
    • 한국수소및신에너지학회논문집
    • /
    • 제14권2호
    • /
    • pp.177-186
    • /
    • 2003
  • Today, human beings are faced with crisis of environmental pollution and fuel exhaustion because energy consumption has increased rapidly as a rise in population, therefore human beings are in need of hydrogen energy as a substitute energy. Hydrogen has the advantages of cleanness and boundlessness, but it has difficulties of storage and safety. Making a nameless hydrogen burner for household in consideration of hydrogen's peculiarity was tried. This hydrogen burner utilized the heat of reaction that was emitted when water was formed by reaction of hydrogen and oxygen, It was tried to impregnate Pt catalyst in ceramic fiber(substrate) for the reaction of hydrogen and oxygen to be reacted more easily. This experiment was inquired that hydrogen is appropriate for being used as burner fuel in home and found out whether its safe usefulness is possible or not.

수소경제 활성화에 따른 수소에너지 안전성 고찰 (A Study on Hydrogen Energy Safety according to the Revitalization of the Hydrogen Economy)

  • 박우일;탁송수;이인우;홍순파
    • 한국가스학회지
    • /
    • 제25권6호
    • /
    • pp.74-79
    • /
    • 2021
  • 본 연구는 수소경제 활성화에 따른 글로벌 수소경제 현황과 현재 사용 중인 에너지원들의 안전성을 분석하였다. 수소경제의 이해와 정부 정책 동향 파악, 기존 사용 에너지인 가솔린, 프로판, 메탄과의 특성 비교 분석 및 정량적 피해영향평가 프로그램인 PHAST를 활용하여 각 에너지원별 피해영향평가를 실시하였다. 분석 결과를 활용해 본 연구는 수소경제 활성화를 위한 수소에너지의 안전성을 분석하고 안전성 제고 방안에 대해 제시하고자 한다.

음이온 교환막 수전해 적용을 위한 고균일 고내구 코발트 산화물 전극의 제조 및 공정 조건 최적화 (Optimization of fabrication and process conditions for highly uniform and durable cobalt oxide electrodes for anion exchange membrane water electrolysis)

  • 이호석;명신우;박준영;박언주;허성준;김남인;이재훈;이재훈;정재엽;진송;이주영;이상호;김치호;최승목
    • 한국표면공학회지
    • /
    • 제56권6호
    • /
    • pp.412-419
    • /
    • 2023
  • Anion exchange membrane electrolysis is considered a promising next-generation hydrogen production technology that can produce low-cost, clean hydrogen. However, anion exchange membrane electrolysis technology is in its early stages of development and requires intensive research on electrodes, which are a key component of the catalyst-system interface. In this study, we optimized the pressure conditions of the hot-pressing process to manufacture cobalt oxide electrodes for the development of a high uniformity and high adhesion electrode production process for the oxygen evolution reaction. As the pressure increased, the reduction of pores within the electrode and increased densification of catalytic particles led to the formation of a uniform electrode surface. The cobalt oxide electrode optimized for pressure conditions exhibited improved catalytic activity and durability. The optimized electrode was used as the anode in an AEMWE single cell, exhibiting a current density of 1.53 A cm-2 at a cell voltage of 1.85 V. In a durability test conducted for 100 h at a constant current density of 500 mA cm-2, it demonstrated excellent durability with a low degradation rate of 15.9 mV kh-1, maintaining 99% of its initial performance.

다층적 모델, 전략적 니치 관리 및 필요성 인자 이론을 활용한 수소 생산 기술의 효과적 관리와 활용 방안 (Effective Management and Utilization of Hydrogen Production Technology Using Multi-layered Model, Strategic Niche Management, and Need Factor Theory)

  • 김준헌;박종화;조대명
    • 한국수소및신에너지학회논문집
    • /
    • 제35권2호
    • /
    • pp.129-139
    • /
    • 2024
  • The significance of hydrogen economy and production technology is steadily increasing. This research reviewed strategies for utilizing hydrogen production technology by combining a multi-layer model, strategic niche management, and the need factor for Hoship. The model was validated as a strategy considering hydrogen production technology and the transformation of the energy system. Using this, a new business model for hydrogen production technology was created, finding a strategic niche and sophisticating the technology. It also proposed ways to unlock the potential of hydrogen production technology and improve its efficiency. This work contributes to the commercialization of hydrogen production technology and its role in sustainable energy conversion. It proposes a new and effective approach for utilizing hydrogen production technology, going beyond its limitations to suggest a more efficient method. It is hoped that these results will be helpful to researchers in hydrogen energy, and serve as a reference for establishing ways to utilize hydrogen production technology.

수소경제로의 이행을 위한 안전관리 정책 연구 (A Study on Safety Policies for a Transition to a Hydrogen Economy)

  • 전대천
    • 한국수소및신에너지학회논문집
    • /
    • 제25권2호
    • /
    • pp.161-172
    • /
    • 2014
  • Hydrogen, which can be produced from abundant and widely distributed renewable energy resources, seems to be a promising candidate for solving the concerns for improving energy security, urban air pollution, and reducing greenhouse gas emissions. The two primary motivating factors for hydrogen economy are fossil fuel supply limitations and concerns about global warming. But the safety issues associated with hydrogen economy need to be investigated and fully understood before being considered as a future energy source. Limited operating experience with hydrogen energy systems in consumer environments is recognised as a significant barrier to the implementation of hydrogen economy. To prevent unnecessary restrictions on emerging codes, standards and local regulations, safety policies based on real hazards should be developed. This article studies briefly the direct impact-distances from hazard events such as hydrogen release and jet fire, and damage levels from hydrogen gas explosion in a confined space. Based on the direct impact-distances indicated in the accident scenarios and consumer environments in Korea, the safety policies, which are related to hydrogen filling station, hydrogen fuel cell car, portable fuel cell, domestic fuel cells, and hydrogen town, are suggested to implement hydrogen economy. To apply the safety policies and overcome the disadvantages of prescriptive risk management, which is setting guidance in great detail to management well known risk but is not covering unidentified risk, hybrid risk management model is also proposed.

소형 수소액화기 설계 및 운전에 관한 연구 (Design and Operation of a Small-Scale Hydrogen Liquefier)

  • 백종훈;강상우;강형묵;나다니엘 갈소;김서영;오인환
    • 한국수소및신에너지학회논문집
    • /
    • 제26권2호
    • /
    • pp.105-113
    • /
    • 2015
  • In order to accelerate hydrogen society in current big renewable energy trend, it is very important that hydrogen can be transported and stored as a fuel in efficient and economical fashion. In this perspective, liquid hydrogen can be considered as one of the most prospective storage methods that can bring early arrival of the hydrogen society by its high gravimetric energy density. In this study, a small-scale hydrogen liquefier has been designed and developed to demonstrate direct hydrogen liquefaction technology. Gifford-McMahon (GM) cryocooler was employed to cool warm hydrogen gas to normal boiling point of hydrogen at 20K. Various cryogenic insulation technologies such as double walled vacuum vessels and multi-layer insulation were used to minimize heat leak from ambient. A liquid nitrogen assisted precooler, two ortho-para hydrogen catalytic converters, and highly efficient heat pipe were adapted to achieve the target liquefaction rate of 1L/hr. The liquefier has successfully demonstrated more than 1L/hr of hydrogen liquefaction. The system also has demonstrated its versatile usage as a very efficient 150L liquid hydrogen storage tank.

Ni 기반 촉매를 이용한 HI 분해 반응 특성 (Characteristics of Hydrogen Iodide Decomposition using Alumina-Supported Ni Based Catalyst)

  • 김지혜;박주식;김창희;강경수;정성욱;조원철;김영호;배기광
    • 한국수소및신에너지학회논문집
    • /
    • 제26권6호
    • /
    • pp.507-515
    • /
    • 2015
  • HI decomposition reaction requires a catalyst for the efficient production of hydrogen as a key reaction for hydrogen production in sulfur-iodine thermochemical water-splitting (SI) cycle. As a catalyst used in the reaction, the performance of platinum catalyst is excellent. While, the platinum catalyst is not economical. Therefore, studies of a nickel catalyst that could replace platinum have been carried out. In this study, the characteristics of the catalytic HI decomposition on the amount of loaded nickel (Ni = 0.1, 0.5, 1, 3, 5, 10 wt%) were investigated. As the supported Ni amount increased up to 3 wt%, HI decomposition was found to increase in linear proportion. However, the conversion of $Ni/Al_2O_3$ catalyst loaded above 3 wt% was not linear. It was thought that the different HI decomposition characteristics was caused in the size and metal dispersion of Ni particles of catalyst. The physical property of catalyst before and after HI decomposition reaction was characterized by BET, chemisorption, XRD and SEM analysis.

FMEA를 이용한 수소 국제표준 제정의 방법론 (Methodology for the International Standardization of Hydrogen using FMEA)

  • 구연진;강병익;임상식;조영도
    • 한국가스학회지
    • /
    • 제22권4호
    • /
    • pp.7-12
    • /
    • 2018
  • 수소 에너지는 20 세기 대표에너지인 석유, 석탄의 대체 에너지로 각광받고 있다. 또한, 수소에너지가 가지고 있는 미세먼지 제로, 풍부한 에너지원 그리고 생태계의 무영향 등의 이점은 다른 신재생 에너지원보다 비교우의를 점하도록 하고 있다. 하지만, 수소 에너지의 명확하지 못한 제품 개발기준과 사용법은 수소 에너지 관련 제품군의 사고 위험도를 높이고, 수소의 높은 에너지 준위는 사고 발생 시, 큰 사회적 문제를 일으킬 요소를 내재하고 있다. 따라서, 본 연구는 빠른 수소 에너지의 표준화 방안을 제시하여 신제품 개발이 대부분인 수소 에너지 관련 제품의 안전한 시장 정착에 도움을 주고자 한다.

TGA를 이용한 Fe2O3/ZrO2의 환원/물 분해/공기산화 kinetic 연구 (Kinetics Study on the Reduction with Methane, Oxidation with Water and Oxidation with Air of Fe2O3/ZrO2 Using TGA)

  • 남현우;강경수;배기광;김창희;조원철;김영호;박주식
    • 한국수소및신에너지학회논문집
    • /
    • 제22권2호
    • /
    • pp.168-177
    • /
    • 2011
  • A set of kinetics study on the reduction with $CH_4$, oxidation with steam and oxidation with air was performed for $Fe_2O_3/ZrO_2$. $Fe_2O_3/ZrO_2$ was prepared by aerial oxidation method. The reactivity experiments were performed in a thermogravimetric analyzer (TGA) with different reacting gas concentrations and temperatures. The obtained activation energy of reduction by methane, oxidation by water and oxidation by air are 219 kJ/mol, 238 and 20 respectively.

정량적 위험성 평가를 통한 고속도로 휴게소 수소 충전소 안전 가이드라인 연구 (A Study on Safety Guidelines for Hydrogen Refueling Stations at Expressway Service Area using Quantitative Risk Assessment)

  • 김희진;장경민;김수현;김기범;정은상
    • 한국수소및신에너지학회논문집
    • /
    • 제32권6호
    • /
    • pp.551-564
    • /
    • 2021
  • The use of clean energy based on the hydrogen economy is increasing rapidly due to the greenhouse gas reduction policies and the increase in the need for hydrogen. Currently, South Korea government have been considering a plan to construct hydrogen refueling stations at expressway service area for the purpose of supplying hydrogen vehicles. In the case of a hydrogen refueling stations, a quantitative risk assessment (QRA) must be performed because it includs and uses a high pressurized hydrogen storage tank. In this study, QRA was conducted using societal risk and F-N curve by the consequence assessment (CA) of jet fire and explosion according to the population density, capacity of the high pressurized hydrogen storage tank and frequency assessment (FA) data to the general hydrogen refueling stations systems in expressway service area. In the cases of jet with a leak diameter of 7.16 mm, regardless of expressway service area location, the societal risk was over 1E-04 that was acceptable for as Low As reasonably practicable (ALARP) region (workforce), but unacceptable for ALARP region (public). In the cases of gas explosion, all expressway service area satisfy ALARP region. In the case of the population density is over 0.0727, QRA for constructing the hydrogen refueling stations, must be conducted.