DOI QR코드

DOI QR Code

Optimization of fabrication and process conditions for highly uniform and durable cobalt oxide electrodes for anion exchange membrane water electrolysis

음이온 교환막 수전해 적용을 위한 고균일 고내구 코발트 산화물 전극의 제조 및 공정 조건 최적화

  • Hoseok Lee (Department of Hydrogen Energy Materials, Korea Institute of Materials Science (KIMS)) ;
  • Shin-Woo Myeong (Department of Hydrogen Energy Materials, Korea Institute of Materials Science (KIMS)) ;
  • Jun-young Park (Department of Hydrogen Energy Materials, Korea Institute of Materials Science (KIMS)) ;
  • Eon-ju Park (Department of Hydrogen Energy Materials, Korea Institute of Materials Science (KIMS)) ;
  • Sungjun Heo (Department of Hydrogen Energy Materials, Korea Institute of Materials Science (KIMS)) ;
  • Nam-In Kim (Department of Hydrogen Energy Materials, Korea Institute of Materials Science (KIMS)) ;
  • Jae-hun Lee (Department of Hydrogen Energy Materials, Korea Institute of Materials Science (KIMS)) ;
  • Jae-hun Lee (Department of Hydrogen Energy Materials, Korea Institute of Materials Science (KIMS)) ;
  • Jae-Yeop Jeong (Department of Hydrogen Energy Materials, Korea Institute of Materials Science (KIMS)) ;
  • Song Jin (Department of Hydrogen Energy Materials, Korea Institute of Materials Science (KIMS)) ;
  • Jooyoung Lee (Department of Hydrogen Energy Materials, Korea Institute of Materials Science (KIMS)) ;
  • Sang Ho Lee (Department of Industrial Chemistry, Pukyong National University) ;
  • Chiho Kim (Department of Hydrogen Energy Materials, Korea Institute of Materials Science (KIMS)) ;
  • Sung Mook Choi (Department of Hydrogen Energy Materials, Korea Institute of Materials Science (KIMS))
  • 이호석 (한국재료연구원 그린수소재료연구실) ;
  • 명신우 (한국재료연구원 그린수소재료연구실) ;
  • 박준영 (한국재료연구원 그린수소재료연구실) ;
  • 박언주 (한국재료연구원 그린수소재료연구실) ;
  • 허성준 (한국재료연구원 그린수소재료연구실) ;
  • 김남인 (한국재료연구원 그린수소재료연구실) ;
  • 이재훈 (한국재료연구원 그린수소재료연구실) ;
  • 이재훈 (한국재료연구원 그린수소재료연구실) ;
  • 정재엽 (한국재료연구원 그린수소재료연구실) ;
  • 진송 (한국재료연구원 그린수소재료연구실) ;
  • 이주영 (한국재료연구원 그린수소재료연구실) ;
  • 이상호 (부경대학교 화학공학과) ;
  • 김치호 (한국재료연구원 그린수소재료연구실) ;
  • 최승목 (한국재료연구원 그린수소재료연구실)
  • Received : 2023.11.04
  • Accepted : 2023.11.08
  • Published : 2023.12.31

Abstract

Anion exchange membrane electrolysis is considered a promising next-generation hydrogen production technology that can produce low-cost, clean hydrogen. However, anion exchange membrane electrolysis technology is in its early stages of development and requires intensive research on electrodes, which are a key component of the catalyst-system interface. In this study, we optimized the pressure conditions of the hot-pressing process to manufacture cobalt oxide electrodes for the development of a high uniformity and high adhesion electrode production process for the oxygen evolution reaction. As the pressure increased, the reduction of pores within the electrode and increased densification of catalytic particles led to the formation of a uniform electrode surface. The cobalt oxide electrode optimized for pressure conditions exhibited improved catalytic activity and durability. The optimized electrode was used as the anode in an AEMWE single cell, exhibiting a current density of 1.53 A cm-2 at a cell voltage of 1.85 V. In a durability test conducted for 100 h at a constant current density of 500 mA cm-2, it demonstrated excellent durability with a low degradation rate of 15.9 mV kh-1, maintaining 99% of its initial performance.

Keywords

Acknowledgement

본 성과물은 농촌진흥청 연구사업 (과제번호:PJ016253)의 지원을 받아 수행된 연구임.

References

  1. E. Haghi, K. Raahemifar, M. Fowler, Investigating the effect of renewable energy incentives and hydrogen storage on advantages of stakeholders in a microgrid, Energy Policy, 113 (2018) 206-222. https://doi.org/10.1016/j.enpol.2017.10.045
  2. Y. Zhou, R. Li, Z. Lv, J. Liu, H. Zhou, C. Xu, Green hydrogen: A promising way to the carbon-free society, Chinese Journal of Chemical Engineering, (2022) 2-13.
  3. M. A. Khan, H. Zhao, W. Zou, Z. Chen, W. Cao, J. Fang, J. Xu, L. Zhang, J. Zhang, Recent progresses in electrocatalysts for water electrolysis, Electrochemical Energy Reviews, 1 (2018) 483-530. https://doi.org/10.1007/s41918-018-0014-z
  4. G. Cipriani, V.D. Dio, F. Genduso, D.L. Cascia, R. Liga, R. Miceli, G.R. Galluzzo, Perspective on hydrogen energy carrier and its automotive applications, International Journal of Hydrogen Energy, 39 (2014) 8482-8494. https://doi.org/10.1016/j.ijhydene.2014.03.174
  5. Y. Zhou, R. Li, Z. Lv, J. Liu, H. Zhou, C. Xu, Green hydrogen: A promising way to the carbon-free society, Chinese Journal of Chemical Engineering, 43 (2022) 2-13.
  6. J. Zhang, Q. Zhang, X. Feng, Support and interface effects in water-splitting electrocatalysts, Advanced Materials, 31 (2019) 1808167.
  7. C. Li, J. B. Baek, Recent advances in noble metal (Pt, Ru, and Ir)-based electrocatalysts for efficient hydrogen evolution reaction, American Chemical Society Omega, 5 (2020) 31-40. https://doi.org/10.1021/acsomega.9b03550
  8. H. Sun, W. C. Jung, Recent advances in doped ruthenium oxides as high-efficiency electrocatalysts for the oxygen evolution reaction, Journal of Materials Chemistry A, 9 (2021) 15506-15521. https://doi.org/10.1039/D1TA03452A
  9. P. Fortin, T. Khoze, X. Cao, S. Y. Martinsen, A. O. Barnett, S. Holdcroft, High-performance alkaline water electrolysis using AemionTM anion exchange membranes, Journal of Power Sources, 451 (2020) 227814.
  10. Y. S. Park, J. Jeong, Y. Noh, M. J. Jang, J. Lee, K. H. Lee, D. C. Lim, M. H. Seo, W. B. Kim, J. Yang, S. M. Choi, Commercial anion exchange membrane water electrolyzer stack through non-precious metal electrocatalysts, Applied Catalysis B: Environmental, 292 (2021) 120170.
  11. P. M. Bodhankar, P. B. Sarawade, G. Singh, A. Vinu, D. S. Dhawale, Recent advances in highly active nanostructured NiFe LDH catalyst for electrochemical water splitting, Journal of Materials Chemistry A, 9 (2021) 3180-3208. https://doi.org/10.1039/D0TA10712C
  12. F. Wang, T. A. Shifa, X. Zhan, Y. Huang, K. Liu, Z. Cheng, C. Jiang, J. He, Recent advances in transition-metal dichalcogenide based nanomaterials for water splitting, Nanoscale, 7 (2015) 19764-19788 https://doi.org/10.1039/C5NR06718A
  13. G. Yuan, J. Bai, L. Zhang, X. Chen, L. Ren, The effect of P vacancies on the activity of cobalt phosphide nanorods as oxygen evolution electrocatalyst in alkali, Applied Catalysis B: Environmental, 284 (2021) 119693.
  14. M. Wang, L. Zhang, Y. He, H. Zhu, Recent advances in transition-metal-sulfide-based bifunctional electrocatalysts for overall water splitting, Journal of Materials Chemistry A, 9 (2021) 5320-5363. https://doi.org/10.1039/D0TA12152E
  15. T.Y. Wei, C.H. Chen, H.C. Chien, S.Y. Lu, C.H. Hu, A cost-effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide-driven sol-gel process, Advanced materials, 22 (2010) 347-351. https://doi.org/10.1002/adma.200902175
  16. Y. S. Park, J. Jeong, Y. Noh, M. J. Jang, J. Lee, K. H. Lim, D.C, M. H. Seo, W.B. Kim, J. Yang, S. M. Choi, Commercial anion exchange membrane water electrolyzer stack through non-precious metal electrocatalysts, Applied Catalysis B: Environmental, 292 (2021) 120170.
  17. F. Tang, W. Cheng, Y. Huang, H. Su, T. Yao, Q. Liu, S. Wei, Strong surface hydrophilicity in Co-based electrocatalysts for water oxidation, ACS Applied Materials & Interfaces, 9 (2017) 26867-26873. https://doi.org/10.1021/acsami.7b07088
  18. W. Xu, K. Scott, CuxCo3-xO4 (0 ≤ x < 1) nanoparticles for oxygen evolution in high performance alkaline exchange membrane water electrolysers, Journal of Materials Chemistry, 21 (2011) 12344.
  19. R. A. Krivina, G. A. Lindquist, S. R. Beaudoin, T. N. Stovall, Wi. L. Thompson, L. P. Twight, D. Marsh, J. Grzyb, K. Fabrizio, J. E. Hutchison, S. W. Boettcher, Anode Catalysts in Anion-Exchange-Membrane Electrolysis without Supporting Electrolyte: Conductivity, Dynamics, and Ionomer Degradation, Advanced Materials, 34 (2022) 2203033.