• 제목/요약/키워드: hydrogen detection

검색결과 268건 처리시간 0.024초

가정용 연료전지 시스템 내부 수소 누출 시 센서 응답 특성에 관한 연구 (An Experimental Study on the Sensor Response at Hydrogen Leakage in a Residential Fuel Cell System)

  • 김영두;신동훈;정태용;남진현;김영규;이정운
    • 한국수소및신에너지학회논문집
    • /
    • 제20권5호
    • /
    • pp.378-383
    • /
    • 2009
  • Hydrogen is the primary fuel in fuel cell systems. Because of high inflammation and explosion possibility of hydrogen, fuel cell systems require safety measures to prevent hydrogen hazard upon leakage. In this study, a model enclosure was made by referring to a commercial residential fuel cell system and hydrogen leakage experiments and computational simulations were conducted therein. Hydrogen was injected into the cavity through leakage holes located at the bottom while its flow rate was precisely controlled using MFC. The transient sensor signals from hydrogen sensors installed inside the enclosure were recorded and analyzed. The hydrogen sensor signals showed different delay times depending on their position relative to a leakage point, which indicated that hydrogen generally moves upward and accumulates at the upper region of a closed cavity. The inflammable regions with hydrogen concentration over 4% LEL were observed to locate near the leakage hole initially, and broaden towards the upper cavity region afterward. The simulation result showed that detection time at the hydrogen sensor was similar to the pattern of experimental results. However, the maximum concentration of hydrogen had a gap between experiment and simulation at detect point due to measurement errors and reaction rate.

수소충전소의 안전성에 관한 연구 (A Study on Safety of Hydrogen Station)

  • 고재욱;이대희;정인희
    • 한국가스학회지
    • /
    • 제13권1호
    • /
    • pp.45-51
    • /
    • 2009
  • 본 논문은 국내에 건설된 충전소를 분석 검토하여 수소충전소에 대한 안전성 평가를 실시함으로써 수소충전 소의 안전성에 대한 확인과 충전소 설치 시 필요한 기준마련에 기초자료를 제공하는 것이 궁극적인 목표이다. 안전성 평가 방법으로 FMEA (Failure Mode and Effect Analysis)를 사용하였고, 충전소를 크게 4개의 공정(제조, 압축, 저장, 충전)으로 분류하였다. 또한 각각의 발견된 위험요소에 S (severity), O (occurrence), D (detection)의 점수를 부여하여 이 세 요소의 곱의 값인 RPN (Risk Priority Number)의 수치를 이용하여 위험의 우선순위를 정하고, 이를 바탕으로 시나리오를 생성하였다. 생성한 시나리오를 기반으로 사고피해영향평가 결과 주요한 사고 유형으로 jet fire와 폭발이 나타났고, PSA (pressure swing adsorption) 공정 feed line에서의 누출의 경우 원료물질에 따라 CO가스의 농도가 상이할 수도 있으나, CO가스중독 위험성을 함께 예측되었다.

  • PDF

Hemoglobin-DNA/pyterpy 박막을 이용한 과산화수소의 전기화학적 검출 (Electrochemical Detection of Hydrogen Peroxide based on Hemoglobin-DNA/pyterpy Modified Gold Electrode)

  • 이동윤;최원석;박상현;권영수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1295-1296
    • /
    • 2008
  • Hydrogen peroxide ($H_2O_2$) biosensor is one of the most developing sensors because this kind of sensors is highly selective and responds quickly to the specific substrate. Hemoglobin (Hb) has been used as ideal biomolecules to construct hydrogen peroxide biosensors because of their high selectivity to $H_2O_2$. The direct electron transfer of Hb has widely investigated for application in the determination of $H_2O_2$ because of its simplicity, high selectivity and intrinsic sensitivity. An electrochemical detection for hydrogen peroxide was investigated based on immobilization of hemoglobin on DNA/Fe(pyterpy)$^{2+}$ modified gold electrode. The pyterpy monolayers were firstly an electron deposition onto the gold electrode surface of the quartz crystal microbalance (QCM). It is offered a template to attach negatively charged DNA. The fabrication process of the electrode was verified by quartz crystal analyzer (QCA). The experimental parameters such as pH, applied potential and amperometric response were evaluated and optimized. Under the optimized conditions, this sensor shows the linear response within the range between $3.0{\times}10^{-6}$ to $9.0{|times}10^{-4}$ M concentrations of $H_2O_2$. The detection limit was determined to be $9{\times}10^{-7}$ M (based on the S/N=3).

  • PDF

무기산 누출 사고 대응을 위한 탐지·분석 방법 연구 (Study on the Methods of Detection and Analysis for Responding Inorganic Acids Spill)

  • 이진선;정미숙;김기준;안성용;윤영삼;윤준헌
    • 한국위험물학회지
    • /
    • 제2권1호
    • /
    • pp.6-11
    • /
    • 2014
  • There have been frequent chemical leaks over the past 10 years. Particularly, inorganic acids like sulfuric acid, nitric acid, and hydrogen chloride take up 37 % of the total chemical accidents which took place for the past 10 years. When an acid chemical leak happens, fume is generated, diffusing into the air, which might cause serious damage to health of local residents and the environment. However, most of the acid-based chemicals, detecting and analysis methods have not been settled considering the frequency of accidents. In this study, we investigated detection and analysis methods to quickly analyze accident sites and evaluate the impacts on environments. Reviewing local and international test analysis methods of acids suggested that nitric acid, sulfuric acid, hydrogen chloride and hydrogen fluoride can be analyzed with IC. It was also found that UV is better for the analysis of hydrogen fluoride and GC/MS for acrylic acid. The analytical methods suggested in the official test methods basically have limitations of consuming much time at stages of preparation and analysis. Considering prompt responses to chemical accidents, further studies should be done to compare the applicability of rapid monitoring methods such as FT-IR, IMR-MS and SIFT-MS.

Liquid Crystal Droplet Patterns to Monitor Catalase Activity at Femtomolar Levels

  • Yoon, Stephanie;Jang, Chang-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권9호
    • /
    • pp.2704-2710
    • /
    • 2014
  • Catalase (CAT) decomposes hydrogen peroxide that is toxic to the body. In this study, simple and sensitive detector has been developed for observing catalase activity using liquid crystal droplet system. Microscale LC droplet patterns are formed by spreading aldehyde-doped nematic liquid crystal on pre-treated glass slides. When hydrogen peroxide is added, aldehyde is oxidized and amphiphiles are formed. Dodecanoates cause the pattern to transit from bright to dark as they self-assemble to form a carboxyalte monolayer at the interface. When a drop of pre-incubated CAT and hydrogen peroxide mixture is placed onto the pattern, bright fan-shape is observed. This planar optical appearance indicates that catalase has decomposed hydrogen peroxide. Compared to the detectors that have been previously developed, this system is more sensitive with detection limit of 1fM. This research suggests further studies to be on LC droplet patterning to develop highly sensitive and methodologically simple sensors for various chemicals.

SiC 기판상에 반응 스퍼터링에 의해 형성된 TiO2막의 수소가스 검지 특성 (Hydrogen Detection of Titanium Dioxide Layer Formed by Reactive Sputtering on SiC Substrates)

  • 김성진
    • 한국전기전자재료학회논문지
    • /
    • 제29권12호
    • /
    • pp.809-813
    • /
    • 2016
  • We investigated a SiC-based hydrogen gas sensor with MIS (metal-insulator-semiconductor) structure for high temperature applications. The sensor was fabricated by $Pd/TiO_2/SiC$ structure, and a thin titanium dioxide ($TiO_2$) layer was exploited for sensitivity improvement. In the experiment, dependences of I-V characteristics and capacitance response properties on hydrogen gas concentrations from 0 to 2,000 ppm were analyzed at room temperature to $400^{\circ}C$. As the result, our sensor using $TiO_2$ dielectric layer showed possibilities with regard to use in hydrogen gas sensors for high-temperature applications.

Hydrogen Sensor Based on A Palladium-Coated Long-Period Fiber Grating Pair

  • Kim, Young-Ho;Kim, Myoung-Jin;Park, Min-Su;Jang, Jae-Hyung;Lee, Byeong-Ha;Kim, Kwang-Taek
    • Journal of the Optical Society of Korea
    • /
    • 제12권4호
    • /
    • pp.221-225
    • /
    • 2008
  • We propose a simple hydrogen detection scheme based on a Mach-Zehnder interferometer formed with a pair of palladium-coated long-period fiber gratings (LPGs). Since an LPG pair offered a fine-structured interference fringe in its transmission spectrum, the resolution as a sensor could be appreciably enhanced compared to that of a single LPG. As the palladium layer absorbed hydrogen, the effective refractive indices of the cladding modes were increased so that the interference spectrum was blue-shifted up to 2.3 nm with a wavelength sensitivity of -0.29 nm/min for 4% of hydrogen concentration.

팔라듐이 코팅된 광섬유 격자를 이용한 절연유속의 용존 수소가스 검출 (Detection of Hydrogen Gas Dissolved in Insulation Oil Based on Palladium-coated Fiber Bragg Grating)

  • 김광택;최누리;백세종
    • 센서학회지
    • /
    • 제27권6호
    • /
    • pp.403-406
    • /
    • 2018
  • We have investigated a fiber-optic sensor for detecting the hydrogen gas dissolved in insulation oil based on a palladium (Pd)-coated fiber Bragg grating (FBG). As the palladium absorbs the hydrogen gas dissolved in the insulation oil, its volume expands and the Bragg wavelength shifts to a longer wavelength. The experimental results showed that the Bragg wavelength of FBG increased to 70 nm when the concentration of hydrogen dissolved in the insulation oil was 409 ppm.

탄소나노튜브 대면적 어셈블리를 통한 고감도-고선택성 과산화수소 센서 개발 (Highly sensitive and selective enzymatic detection for hydrogen peroxide using a non-destructively assembled single-walled carbon nanotube film)

  • 이동욱;안희호;서병관;이승우
    • 센서학회지
    • /
    • 제30권4호
    • /
    • pp.229-235
    • /
    • 2021
  • This study presents a simple approach for the assembly of a free-standing conductive electronic nanofilm of single-walled carbon nanotubes (SWNTs) suitable for enzymatic electrochemical biosensors. A large-scale SWNT electronic film was successfully produced by the dialysis of p-Terphenyl-4,4''-dithiol (TPDT)-treated SWNTs. Furthermore, Horseradish peroxidase (HRP) was immobilized on the TPDT-SWNT electronic film, and the enzymatic detection of hydrogen peroxide (H2O2) was demonstrated without mediators. The detection of H2O2 in the negative potential range (-0.4 V vs. Ag/AgCl) was achieved by direct electron transfer of heme-based enzymes that were immobilized on the TPDT-SWNT electronic film. The SWNT-based biosensor exhibited a wide detection range of H2O2 from 10 µM to 10 mM. The HRP-doped SWNT electronic film achieved a high sensitivity of 342 ㎛A/mM·cm2 and excellent selectivity against a variety of redox-active interfering substances, such as ascorbic acid, uric acid, and acetaminophen.

Chemiluminescence immunochromatographic analysis for the quantitative determination of algal toxins

  • Pyo, Dongjin;Kim, Taehoon
    • ALGAE
    • /
    • 제28권3호
    • /
    • pp.289-296
    • /
    • 2013
  • For the quantitative detection of algal toxin, microcystin, a chemiluminescence immunochromatographic assay method was developed. The developed system consists of four parts, chemiluminescence assay strip (nitrocellulose membrane), horse radish peroxidase labeled microcystin monoclonal antibodies, chemiluminescence substrate (luminol and hydrogen peroxide), and luminometer. The performance of the chemiluminescence immunochromatographic assay system was compared with high performance liquid chromatography (HPLC) detection. The detection limit of chemiluminescence immunochromatographic assay system is several orders of magnitude lower than with HPLC. The chemiluminescence immunochromatography and HPLC results correlated very well with the correlation coefficient ($r^2$) of 0.979.