Browse > Article
http://dx.doi.org/10.46670/JSST.2021.30.4.229

Highly sensitive and selective enzymatic detection for hydrogen peroxide using a non-destructively assembled single-walled carbon nanotube film  

Lee, Dongwook (Department of Fine Chemistry, Seoul National University of Science and Technology)
Ahn, Heeho (Department of Fine Chemistry, Seoul National University of Science and Technology)
Seo, Byeong-Gwuan (Department of Fine Chemistry, Seoul National University of Science and Technology)
Lee, Seung-Woo (Department of Fine Chemistry, Seoul National University of Science and Technology)
Publication Information
Journal of Sensor Science and Technology / v.30, no.4, 2021 , pp. 229-235 More about this Journal
Abstract
This study presents a simple approach for the assembly of a free-standing conductive electronic nanofilm of single-walled carbon nanotubes (SWNTs) suitable for enzymatic electrochemical biosensors. A large-scale SWNT electronic film was successfully produced by the dialysis of p-Terphenyl-4,4''-dithiol (TPDT)-treated SWNTs. Furthermore, Horseradish peroxidase (HRP) was immobilized on the TPDT-SWNT electronic film, and the enzymatic detection of hydrogen peroxide (H2O2) was demonstrated without mediators. The detection of H2O2 in the negative potential range (-0.4 V vs. Ag/AgCl) was achieved by direct electron transfer of heme-based enzymes that were immobilized on the TPDT-SWNT electronic film. The SWNT-based biosensor exhibited a wide detection range of H2O2 from 10 µM to 10 mM. The HRP-doped SWNT electronic film achieved a high sensitivity of 342 ㎛A/mM·cm2 and excellent selectivity against a variety of redox-active interfering substances, such as ascorbic acid, uric acid, and acetaminophen.
Keywords
Single-walled carbon nanotube; Hydrogen peroxide; Direct-electron-transfer; Enzymatic biosensor; Covalent assembly;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Tonyushkina and J. H. Nichols, "Glucose meters: a review of technical challenges to obtaining accurate results", J. Diabetes. Sci. Technol., Vol. 3, No. 4, pp. 971-980, 2009.   DOI
2 M. Das and P. Goswami, "Direct electrochemistry of alcohol oxidase using multiwalled carbon nanotube as electroactive matrix for biosensor application", Bioelectrochemistry, Vol. 89, pp. 19-25, 2013.   DOI
3 M. P. Wymann, V. von Tscharner, D. A. Deranleau, and M. Baggiolini, "Chemiluminescence detection of H2O2 produced by human-neutrophils during the respiratory burst", Anal. Biochem., Vol. 165, No. 2, pp. 371-378, 1987.   DOI
4 M. B. Gholivand and M. Khodadadian, "Amperometric cholesterol biosensor based on the direct electrochemistry of cholesterol oxidase and catalase on a graphene/ionic liquid-modified glassy carbon electrode", Biosens. Bioelectron., Vol. 53, pp. 472-478, 2014.   DOI
5 S. W. Lee, K. Y. Lee, Y. W. Song, W. K. Choi, J. Chang, and H. Yi, "Direct electron transfer of enzymes in a biologically assembled conductive nanomesh enzyme platform", Adv. Mater., Vol. 28, No. 8, pp. 1577-1584, 2016.   DOI
6 K. Hiraka, W. Tsugawa, and R. Asano, M.A. Yokus, K. Ikebukuro, M.A. Daniele, K. Sode, "Rational design of direct electron transfer type l-lactate dehydrogenase for the development of multiplexed biosensor", Biosens. Bioelectron., Vol. 176, p. 112933, 2021.   DOI
7 P. May, S. Laghmari, and M. Ulbricht, "Concentration polarization enabled reactive coating of nanofiltration membranes with zwitterionic hydrogel", Membranes., Vol. 11, No. 3, pp. 187 2021.   DOI
8 X. Yu, Y. Gong, W. Xiong, M. Li, J. Zhao, and Y. Che, "Turn-on fluorescent detection of hydrogen peroxide and triacetone triperoxide via enhancing interfacial interactions of a blended system", Anal. Chem., Vol. 91, No. 11, pp. 6967-6970, 2019.   DOI
9 C. C. Hsu, Y. R. Lo, Y. C. Lin, Y. C. Shi, and P. L. Li, "A Spectrometric method for hydrogen peroxide concentration measurement with a reusable and cost-efficient sensor", Sens., Vol. 15, No. 10, pp. 25716-25729, 2015.   DOI
10 Y. Y. Niu, J. Liu, W. Chen, C. X. Yin, W. J. Weng, X. Y. Li, X. L. Wang, G. J. Li, and W. Sun, "A direct electron transfer biosensor based on a horseradish peroxidase and gold nanotriangle modified electrode and electrocatalysis", Anal. Methods, Vol. 10, No. 44, pp. 5297-5304, 2018.   DOI
11 T. Pajkossy and S. Vesztergom, "Analysis of voltammograms of quasi-reversible redox systems: Transformation to potential program invariant form", Electrochim. Acta., Vol. 297, pp. 1121-1129, 2019.   DOI
12 Z. P. Kang, K. L. Jiao, C. Yu, J. Dong, R. Y. Peng, Z. Q. Hu, and S. Q. Jiao, "Direct electrochemistry and bioelectrocatalysis of glucose oxidase in CS/CNC film and its application in glucose biosensing and biofuel cells", RSC Adv., Vol. 7, No. 8, pp. 4572-4579, 2017.   DOI
13 E. M. Perez and N. Martin, "π - π interactions in carbon nanostructures", Chem. Soc. Rev., Vol. 44, No. 18, pp. 6425-6433, 2015.   DOI
14 J. Wang, "Glucose biosensors: 40 years of advances and challenges", Electroanalysis, Vol. 13, No. 12, pp. 983-988, 2001.   DOI
15 I. S. Kucherenko, O. O. Soldatkin, D. Y. Kucherenko, O. V. Soldatkina, and S. V. Dzyadevych, "Advances in nanomaterial application in enzyme-based electrochemical biosensors: a review", Nanoscale Adv, Vol. 1, No. 12, pp. 4560-4577, 2019.   DOI
16 S. W. Lee, T. H. Kang, S. K. Lee, K. Y. Lee, and H. Yi, "Hydrodynamic layer-by-layer assembly of transferable enzymatic conductive nanonetworks for enzyme-stickerbased contact printing of electrochemical biosensors", ACS Appl. Mater. Interfaces, Vol. 10, No. 42, pp. 36267-36274, 2018.   DOI
17 D. Fass and C. Thorpe, "Chemistry and enzymology of disulfide cross-linking in proteins", Chem. Rev., Vol. 118, No. 3, pp. 1169-1198, 2018.   DOI
18 J. L. Tang, J. G. Jiang, Y. H. Song, Z. Q. Peng, Z. Y. Wu, S. J. Dong, and E. K. Wang, "Conformation change of horseradish peroxidase in lipid membrane", Chem. Phys. Lipids., Vol. 120, No. 1-2, pp. 119-129, 2002.   DOI