Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.9.2704

Liquid Crystal Droplet Patterns to Monitor Catalase Activity at Femtomolar Levels  

Yoon, Stephanie (Department of Chemistry, Gachon University)
Jang, Chang-Hyun (Department of Chemistry, Gachon University)
Publication Information
Abstract
Catalase (CAT) decomposes hydrogen peroxide that is toxic to the body. In this study, simple and sensitive detector has been developed for observing catalase activity using liquid crystal droplet system. Microscale LC droplet patterns are formed by spreading aldehyde-doped nematic liquid crystal on pre-treated glass slides. When hydrogen peroxide is added, aldehyde is oxidized and amphiphiles are formed. Dodecanoates cause the pattern to transit from bright to dark as they self-assemble to form a carboxyalte monolayer at the interface. When a drop of pre-incubated CAT and hydrogen peroxide mixture is placed onto the pattern, bright fan-shape is observed. This planar optical appearance indicates that catalase has decomposed hydrogen peroxide. Compared to the detectors that have been previously developed, this system is more sensitive with detection limit of 1fM. This research suggests further studies to be on LC droplet patterning to develop highly sensitive and methodologically simple sensors for various chemicals.
Keywords
Liquid crystal; 4-Cyano-4'-pentylbiphenyl (5CB); Droplet pattern; Catalase; Hydrogen peroxide;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kobayashi, M.; Sugiyama, H.; Wang, D.-H.; Toda, N.; Maeshima, Y.; Yamasake, Y.; Masuoka, N.; Yamada, M.; Kira, S.; Makino, H. Kidney International 2005, 68, 1018.   DOI   ScienceOn
2 Ashley, J.; Li, S. F. Y. Biosensors and Bioelectronics 2013, 48, 126.   DOI   ScienceOn
3 Futo, P.; Markus, G.; Kiss, A.; Adanyi, N. Electroanalysis 2012, 24, 107.   DOI
4 Cohen, C. B.; Weber, S. G. Anal. Chem. 1993, 65, 169.   DOI
5 Hu, Q.-Z.; Jang, C.-H. Journal of Biotechnology 2012, 157, 223.   DOI   ScienceOn
6 Adgate, J. L.; Bartekova, A.; Raynor, P. C.; Griggs, J. G.; Ryan, A. D.; Acharya, B. R.; Volkmann, C. J.; Most, D. D.; Lai, S.; Bonds, M. D. J. Environ. Monit. 2009, 11, 49.   DOI   ScienceOn
7 Gupta, V. K.; Skaife, J. J.; Dubrovsky, T. B.; Abbott, N. L. Science 1998, 279, 2077.   DOI   ScienceOn
8 Brake, J. M.; Abbott, N. L. Langmuir 2007, 23, 8497.   DOI   ScienceOn
9 Hu, Q. Z.; Jang, C. H. Soft Matter 2013, 9, 5779.   DOI   ScienceOn
10 Bi, X.; Hartono, D.; Yang, K.-L. Adv. Funct. Mater. 2009, 19, 3760.   DOI   ScienceOn
11 Tao, Z.; Raffel, R. A.; Souid, A. K.; Goodisman, J. Biophysical J. 2009, 96, 2977.   DOI   ScienceOn
12 Bolwell, G. P.; Woljtasek, P. Physiol. Mol. Plant Pathol. 1997, 51, 347.   DOI   ScienceOn
13 Apel, K.; Hirt, H. Annu. Rev. Plant Biol. 2004, 55, 79.
14 Miller, E. W.; Dickinson, B.C.; Chang, C. J. Proc. Natl. Acad. Sci. USA 2010, 107, 15681.   DOI   ScienceOn
15 Xiao, Y.; Ju, H.-X.; Chen, H.-Y. Analytica Chimica Acta 1999, 391, 73.   DOI   ScienceOn
16 Karyakin, A. A.; Karyakina, E. E. Russ. Chem. Bull. Int. Ed. 2001, 50, 1811.   DOI
17 Mattos, I. L.; Shiraishi, K. A.; Braz, A. D.; Fernandes, J. R. Quim. Nova 2003, 26, 373.   DOI   ScienceOn
18 Huang, K.-J.; Niu, D.-J.; Liu, X.; Wu, Z.-W.; Fan, Y.; Chang, Y.-F.; Wu, Y.-Y. Electrochimica Acta 2011, 56, 2957.
19 Hu, Q.-Z.; Jang, C.-H. Talanta 2012, 99, 36.   DOI   ScienceOn
20 Bi, X.; Yang, K.-L. Biosens Bioelectron. 2010, 26, 107.   DOI   ScienceOn
21 Sato, K.; Hyodo, M.; Takagi, J.; Aoki, M.; Noyori, R. Tetrahedron Letters 2000, 41, 1439.   DOI   ScienceOn
22 Liu, D.; Jang, C.-H. Sensors and Actuators B 2014, 193, 770.   DOI   ScienceOn
23 Aizawa, M.; Karube, I.; Suzuki, S. Analytica Chimica Acta 1974, 69, 431.   DOI   ScienceOn
24 Aebi, H.; Suter, H. Adv. Hum. Genet 1971, 143.
25 Goth, L.; Eaton, J. W. Lancet 2000, 356, 1820.   DOI   ScienceOn
26 Liao, S.; Qiao, Y.; Han, W.; Xie, Z.; Wu, Z.; Shen, G.; Yu, R. Anal. Chem. 2012, 84, 45.   DOI
27 Murthy, M. R. N.; Reid III, T.; Sicignano, A.; Tanaka, N.; Rossmann, M. G. J. Mol. Biol. 1981, 152, 465.   DOI