• Title/Summary/Keyword: human umbilical vein endothelial cells (HUVECs)

Search Result 147, Processing Time 0.023 seconds

Korean Red ginseng prevents endothelial senescence by downregulating the HO-1/NF-κB/miRNA-155-5p/eNOS pathway

  • Kim, Tae-Hoon;Kim, Ji-Yoon;Bae, Jieun;Kim, Young-Mi;Won, Moo-Ho;Ha, Kwon-Soo;Kwon, Young-Guen;Kim, Young-Myeong
    • Journal of Ginseng Research
    • /
    • v.45 no.2
    • /
    • pp.344-353
    • /
    • 2021
  • Background: Korean Red ginseng extract (KRGE) has beneficial effects on the cardiovascular system by improving endothelial cell function. However, its pharmacological effect on endothelial cell senescence has not been clearly elucidated. Therefore, we examined the effect and molecular mechanism of KRGE on the senescence of human umbilical vein endothelial cells (HUVECs). Methods: HUVECs were grown in normal or KRGE-supplemented medium. Furthermore, they were transfected with heme oxygenase-1 (HO-1) gene or treated with its inhibitor, a NF-κB inhibitor, and a miR-155-5p mimic or inhibitor. Senescence-associated characteristics of endothelial cells were determined by biochemical and immunohistochemical analyses. Results: Treatment of HUVECs with KRGE resulted in delayed onset and progression of senescence-associated characteristics, such as increased lysosomal acidic β-galactosidase and decreased telomerase activity, angiogenic dysfunction, and abnormal cell morphology. KRGE preserved the levels of anti-senescent factors, such as eNOS-derived NO, MnSOD, and cyclins D and A: however, it decreased the levels of senescence-promoting factors, such as ROS, activated NF-κB, endothelial cell inflammation, and p21 expression. The beneficial effects of KRGE were due to the induction of HO-1 and the inhibition of NF-κB-dependent biogenesis of miR-155-5p that led to the downregulation of eNOS. Moreover, treatment with inhibitors of HO-1, NF-κB, and miR-155-5p abolished the anti-senescence effects of KRGE. Conclusion: KRGE delayed or prevented HUVEC senescence through a signaling cascade involving the induction of HO-1, the inhibition of NF-κB-dependent miR-155-5p biogenesis, and the maintenance of the eNOS/NO axis activity, suggesting that it may protect against vascular diseases associated with endothelial senescence.

Maximization of Extracted Condition of Pro-angiogenic Components in Citrus unshiu Peels using Dimethyl Sulfoxide

  • Lee, Jungwhoi;Kim, Myungseung;Kim, Jae Hoon
    • Natural Product Sciences
    • /
    • v.22 no.4
    • /
    • pp.287-292
    • /
    • 2016
  • Aqueous extraction of Citrus unshiu peels (AECUP) is mainly comprised with pro-angiogenichesperidin and narirutin. In this study, we report approaches to increasing the yields of extracted hesperidin and narirutinfrom Citrus unshiu peels using proper solvents. Significantly improved yields of both compounds were obtained using methanol and dimethyl sulfoxide (DMSO) compared to acetonitrile, ethyl acetate, ethanol, and isopropyl alcohol. Especially, effect of DMSO was by far the better of the two solvents in extraction of hesperidin. In addition, the DMSO extracted hesperidin significantly induced the pro-angiogenic effects of human umbilical vein endothelial cells (HUVECs) and markedly up-regulated phosphorylation of the ERK1/2 signaling pathway. These results demonstrate that pro-angiogenic inducer; hesperidin and narirutin can be simply, easily, and effectively extracted from Citrus unshiu peels.

Baicalin, baicalein and wogonin inhibits high glucose-induced vascular inflammation in vitro and in vivo

  • Ku, Sae-Kwang;Bae, Jong-Sup
    • BMB Reports
    • /
    • v.48 no.9
    • /
    • pp.519-524
    • /
    • 2015
  • Vascular inflammatory process has been suggested to play a key role in initiation and progression of atherosclerosis, a major complication of diabetes mellitus. Thus, in this study, we attempted to determine whether three structurally related polyphenols found in the Chinese herb Huang Qui, namely baicalin, baicalein, and wogonin, can suppress vascular inflammatory processes induced by high glucose (HG) in human umbilical vein endothelial cells (HUVECs) and mice. Data showed that HG induced markedly increased vascular permeability, monocyte adhesion, expressions of cell adhesion molecules (CAMs), formation of reactive oxygen species (ROS) and activation of nuclear factor (NF)-κB. Remarkably, all of the above mentioned vascular inflammatory effects of HG were attenuated by pretreatment with baicalin, baicalein, and wogonin. Vascular inflammatory responses induced by HG are critical events underlying development of various diabetic complications, therefore, our results suggest that baicalin, baicalein, and wogonin may have significant therapeutic benefits against diabetic complications and atherosclerosis. [BMB Reports 2015; 48(9): 519-524]

The Experimental Study of Glycyrrhiza uralensis on Wound Healing by Antioxidant Effect (감초 추출물의 항산화 효과에 의한 상처 치료 가능성 연구)

  • Lee, Yun Kyung;Roh, Seok Sun
    • Journal of Haehwa Medicine
    • /
    • v.25 no.1
    • /
    • pp.145-153
    • /
    • 2016
  • Objectives : The purpose of this study is to evaluate the wound healing potential of Glycyrrhiza uralensis extract. Methods : Free radical scavenging activity tests for DPPH, peroxynitrite (ONOO) and hydroxyl radical (${\cdot}OH$) and total phenolic contents of Glycyrrhiza uralensis extract were conducted. Tube formation assay was performed using human umbilical vein endothelial cells (HUVECs). Results : The results showed that Glycyrrhiza uralensis extract exerted inhibitory effects on ONOO and ${\cdot}OH$. Tube formation in HUVEC was increase in a dose dependent manner. Conclusions : These results show the potential to promote the wound healing process by Glycyrrhiza uralensis extract.

RK-270D and E, Oxindole Derivatives from Streptomyces sp. with Anti-Angiogenic Activity

  • Jang, Jun-Pil;Jang, Mina;Nogawa, Toshihiko;Takahashi, Shunji;Osada, Hiroyuki;Ahn, Jong Seog;Ko, Sung-Kyun;Jang, Jae-Hyuk
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.302-306
    • /
    • 2022
  • A chemical investigation of a culture extract from Streptomyces sp. RK85-270 led to the isolation and characterization of two new oxindoles, RK-270D (1) and E (2). The structures of 1 and 2 were determined by analyzing spectroscopic and spectrometric data from 1D and 2D NMR and High-resolution electrospray ionization mass spectrometry (HRESIMS) experiments. Compound 1 exhibited anti-angiogenic activities against human umbilical vein endothelial cells (HUVECs) without cytotoxicity. Results of Western blot analysis revealed that 1 inhibits VEGF-induced angiogenesis in the HUVECs via VEGFR2/ p38 MAPK-mediated pathway.

Cryptotanshinone inhibits TNF-α-induced LOX-1 expression by suppressing reactive oxygen species (ROS) formation in endothelial cells

  • Ran, Xiaoli;Zhao, Wenwen;Li, Wenping;Shi, Jingshan;Chen, Xiuping
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.4
    • /
    • pp.347-355
    • /
    • 2016
  • Cryptotanshinone (CPT) is a natural compound isolated from traditional Chinese medicine Salvia miltiorrhiza Bunge. In the present study, the regulatory effect and potential mechanisms of CPT on tumor necrosis factor alpha ($TNF-{\alpha}$) induced lectin-like receptor for oxidized low density lipoprotein (LOX-1) were investigated. Human umbilical vein endothelial cells (HUVECs) were cultured and the effect of $TNF-{\alpha}$ on LOX-1 expression at mRNA and protein levels was determined by Real-time PCR and Western blotting respectively. The formation of intracellular ROS was determined with fluorescence probe $CM-DCFH_2-DA$. The endothelial ox-LDL uptake was evaluated with DiI-ox-LDL. The effect of CPT on LOX-1 expression was also evaluated with SD rats. $TNF-{\alpha}$ induced LOX-1 expression in a dose- and time- dependent manner in endothelial cells. $TNF-{\alpha}$ induced ROS formation, phosphorylation of $NF-{\kappa}B$ p65 and ERK, and LOX-1 expression, which were suppressed by rotenone, DPI, NAC, and CPT. $NF-{\kappa}B$ inhibitor BAY11-7082 and ERK inhibitor PD98059 inhibited $TNF-{\alpha}-induced$ LOX-1 expression. CPT and NAC suppressed $TNF-{\alpha}-induced$ LOX-1 expression and phosphorylation of $NF-{\kappa}B$ p65 and ERK in rat aorta. These data suggested that $TNF-{\alpha}$ induced LOX-1 expression via ROS activated $NF-{\kappa}B/ERK$ pathway, which could be inhibited by CPT. This study provides new insights for the anti-atherosclerotic effect of CPT.

Cirsium japonicum var. Maackii Extract Suppress VCAM-1 and ICAM-1 Expression in TNF-α-treated Human Vascular Endothelial Cells by Blocking NF-κB Activation (인간 혈관 내피세포에서 NF-κB 억제를 통한 엉겅퀴 추출물의 VCAM-1 및 ICAM-1 발현 억제효과)

  • Jae Young Shin;Byoung Ok Cho;Ji Hyeon Park;Eun Seo Kang;Jae Suk Sim;Dong Jun Sim;Seon Il Jang
    • Korean Journal of Pharmacognosy
    • /
    • v.54 no.1
    • /
    • pp.21-26
    • /
    • 2023
  • Cirsium japonicum var. maackii is a traditional Korean wild perennial herb used to treat blood circulation, high blood pressure, inflammation, diabetes, and kidney damage. However, it is not known whether C. japonicum var. maackii directly improves endothelial dysfunction. In this study, the effect of C. japonicum var. maackii (CJE) on tumor necrosis factor (TNF)-α-induced vascular inflammation was investigated in vitro using human umbilical vein endothelial cells (HUVEC). As a result, CJE inhibited the production of VCAM-1, ICAM-1 and ROS increased by TNF-α in HUVECs. In addition, treatment with CJE attenuated IκB phosphorylation and translocation of NF-κB to the nucleus. These results suggest that CJE can suppress TNFα-induced adhesion molecule expression by blocking NF-κB signaling and inhibiting ROS generation. The results of this study show that CJE has the potential to be used to treat and prevent inflammation associated with endothelial cell damage.

MMPP is a novel VEGFR2 inhibitor that suppresses angiogenesis via VEGFR2/AKT/ERK/NF-κB pathway

  • Na-Yeon Kim;Hyo-Min Park;Jae-Young Park;Uijin Kim;Ha Youn Shin;Hee Pom Lee;Jin Tae Hong;Do-Young Yoon
    • BMB Reports
    • /
    • v.57 no.5
    • /
    • pp.244-249
    • /
    • 2024
  • Many types of cancer are associated with excessive angiogenesis. Anti-angiogenic treatment is an effective strategy for treating solid cancers. This study aimed to demonstrate the inhibitory effects of (E)-2-methoxy-4-(3-(4-methoxyphenyl) prop-1-en-1-yl) phenol (MMPP) in VEGFA-induced angiogenesis. The results indicated that MMPP effectively suppressed various angiogenic processes, such as cell migration, invasion, tube formation, and sprouting of new vessels in human umbilical vein endothelial cells (HUVECs) and mouse aortic ring. The inhibitory mechanism of MMPP on angiogenesis involves targeting VEGFR2. MMPP showed high binding affinity for the VEGFR2 ATP-binding domain. Additionally, MMPP improved VEGFR2 thermal stability and inhibited VEGFR2 kinase activity, suppressing the downstream VEGFR2/AKT/ERK pathway. MMPP attenuated the activation and nuclear translocation of NF-κB, and it downregulated NF-κB target genes such as VEGFA, VEGFR2, MMP2, and MMP9. Furthermore, conditioned medium from MMPP-treated breast cancer cells effectively inhibited angiogenesis in endothelial cells. These results suggested that MMPP had great promise as a novel VEGFR2 inhibitor with potent anti-angiogenic properties for cancer treatment via VEGFR2/AKT/ERK/NF-κB signaling pathway.

Role of microRNA-520h in 20(R)-ginsenoside-Rg3-mediated angiosuppression

  • Keung, Man-Hong;Chan, Lai-Sheung;Kwok, Hoi-Hin;Wong, Ricky Ngok-Shun;Yue, Patrick Ying-Kit
    • Journal of Ginseng Research
    • /
    • v.40 no.2
    • /
    • pp.151-159
    • /
    • 2016
  • Background: Ginsenoside-Rg3, the pharmacologically active component of red ginseng, has been found to inhibit tumor growth, invasion, metastasis, and angiogenesis in various cancer models. Previously, we found that 20(R)-ginsenoside-Rg3 (Rg3) could inhibit angiogenesis. Since microRNAs (miRNAs) have been shown to affect many biological processes, they might play an important role in ginsenoside-mediated angiomodulation. Methods: In this study, we examined the underlying mechanisms of Rg3-induced angiosuppression through modulating the miRNA expression. In the miRNA-expression profiling analysis, six miRNAs and three miRNAs were found to be up- or down-regulated in vascular-endothelial-growth-factor-induced human-umbilical-vein endothelial cells (HUVECs) after Rg3 treatment, respectively. Results: A computational prediction suggested that mature hsa-miR-520h (miR-520h) targets ephrin receptor (Eph) B2 and EphB4, and hence, affecting angiogenesis. The up-regulation of miR-520h after Rg3 treatment was validated by quantitative real-time polymerase chain reaction, while the protein expressions of EphB2 and EphB4 were found to decrease, respectively. The mimics and inhibitors of miR- 520h were transfected into HUVECs and injected into zebra-fish embryos. The results showed that overexpression of miR-520h could significantly suppress the EphB2 and EphB4 protein expression, proliferation, and tubulogenesis of HUVECs, and the subintestinal-vessel formation of the zebra fish. Conclusion: These results might provide further information on the mechanism of Rg3-induced angiosuppression and the involvement of miRNAs in angiogenesis.

Study on Antiangiogenic Effect of Black Ginseng Radix (흑삼의 신생혈관 억제활성에 대한 연구)

  • Song, Gyu-Yong;Chung, Kyu-Jin;Shin, Young-Jin;Lee, Gye-Won;Lee, Sook-Young;Seo, Young-Bae
    • The Korea Journal of Herbology
    • /
    • v.26 no.3
    • /
    • pp.83-90
    • /
    • 2011
  • Objectives : This study was performed to investigate the influence of black ginseng radix extracts (BG) and ginsenoside Rg3, Rg5 on basic fibroblast growth factor (bFGF) induced proliferation, migration and capillary tubule-like formation of human umbilical vein endothelial cells (HUVECs). Methods : HUVECs were cultured with BG and ginsenoside Rg3, Rg5 at different concentrations (60, 125, 250, 500, $1,000{\mu}g/m\ell$) for 2 day In the presence of bFGF, respectively. XTT was used to detect the proliferation. Migration and tube formations were examined to detect the antiangiogenesis. Also, the chick embryo chorioallantoic membrane (CAM) assay was performed to detect the antiangiogenesis. Results : BG and ginsenoside Rg3, Rg5 significantly inhibited bFGF-induced endothelial cell proliferation and migration in a dose-dependent manner. Tube formation in bFGF-induced HUVECs were suppressed by BG and ginsenoside Rg3, Rg5. Moreover, BG and ginsenoside Rg3, Rg5 (30-$50{\mu}g$/egg) inhibited new blood vessel formation on the growing CAM. Conclusions:Based on the present results, it can be suggested that BG has a potential chemopreventive agent via antiangiogenesis.