• Title/Summary/Keyword: human error model

Search Result 365, Processing Time 0.044 seconds

HFACS-K: A Method for Analyzing Human Error-Related Accidents in Manufacturing Systems: Development and Case Study (제조업의 인적오류 관련 사고분석을 위한 HFACS-K의 개발 및 사례연구)

  • Lim, Jae Geun;Choi, Joung Dock;Kang, Tae Won;Kim, Byung Chul;Ham, Dong-Han
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.4
    • /
    • pp.64-73
    • /
    • 2020
  • As Korean government and safety-related organizations make continuous efforts to reduce the number of industrial accidents, accident rate has steadily declined since 2010, thereby recording 0.48% in 2017. However, the number of fatalities due to industrial accidents was 1,987 in 2017, which means that more efforts should be made to reduce the number of industrial accidents. As an essential activity for enhancing the system safety, accident analysis can be effectively used for reducing the number of industrial accidents. Accident analysis aims to understand the process of an accident scenario and to identify the plausible causes of the accident. Accident analysis offers useful information for developing measures for preventing the recurrence of an accident or its similar accidents. However, it seems that the current practice of accident analysis in Korean manufacturing companies takes a simplistic accident model, which is based on a linear and deterministic cause-effect relation. Considering the actual complexities underlying accidents, this would be problematic; it could be more significant in the case of human error-related accidents. Accordingly, it is necessary to use a more elaborated accident model for addressing the complexity and nature of human-error related accidents more systematically. Regarding this, HFACS(Human Factors Analysis and Classification System) can be a viable accident analysis method. It is based on the Swiss cheese model and offers a range of causal factors of a human error-related accident, some of which can be judged as the plausible causes of an accident. HFACS has been widely used in several work domains(e.g. aviation and rail industry) and can be effectively used in Korean industries. However, as HFACS was originally developed in aviation industry, the taxonomy of causal factors may not be easily applied to accidents in Korean industries, particularly manufacturing companies. In addition, the typical characteristics of Korean industries need to be reflected as well. With this issue in mind, we developed HFACS-K as a method for analyzing accidents happening in Korean industries. This paper reports the process of developing HFACS-K, the structure and contents of HFACS-K, and a case study for demonstrating its usefulness.

Analysis of Bridge Team's Technical Behavior Pattern Appearing in Williamson's Turn (윌리암슨 선회법에 나타난 선교팀의 기술적 행동유형의 분석)

  • Yun, Chong-gum;Park, Deuk-Jin;Yim, Jeong-Bin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.701-708
    • /
    • 2018
  • Human error is an important cause of maritime accidents and the identification of human error is fundamental to maritime-accident preventions. In particular, the pattern of technical behavior taken in the circumstance of bridge teams(navigator & helmsman) provides important information to identify human error. The purpose of this study is to identify and analyze technical behavior pattern of bridge teams using Williamson's turn for rescue of persons overboard. The focus of this study is to build and analyze a cognitive model of the human behavior factors of the bridge teams in the process of implementing the experiments. The experimental environment was constructed using a ship-handling simulator and conducted an experiment on participants from 24 bridge teams. As a result of the experiment, it was able to identify the behavior pattern of the ship's maneuvering and maintain trajectory using the rudder and engine. This study is expected to correct human error in the bridge teams application to the certification and training of seafarers.

Human Operator Modeling and Input Command Shaping Design for Manual Target Tracking System (수동표적추적장치의 휴먼운용자 모델링 및 입력명령형성기 설계)

  • Lee, Seok-Jae;Lyou, Joon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.21-30
    • /
    • 2007
  • A practical method to design the input shaping which generates control command is proposed in this paper, We suggest an experimental technique considering human operator's target tracking error to improve aiming accuracy which significantly affects hit probability. It is known that stabilization performance is one of the most important factors for ground combat vehicle system. In particular, stabilization error of the manual target tracking system mounted on moving vehicle directly affects hit probability. To reduce this error, we applied input command shaping method using preprocessing filtering and functional curve fitting. First of all, we construct the human operator model to consider effects of human operator on our system. Input shaping curve is divided into several regions to get rid of the above problems and to improve the system performance. At example design part, we chose three steps of functional command curve and determine the parameters of the function by the proposed design method. In order to verify the proposed design method, we carried out the experiments with real plant of a fighting vehicle.

Human error analysis in nuclear power plants based on a cognitive model (인지과정모형에 기반한 원자력발전소 인적오류 분석)

  • 윤완철;이용희;김영수
    • Journal of the Ergonomics Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.33-41
    • /
    • 1994
  • The paper presents a new scheme and a support system for the analysis sof hyman errors in nuclear power plants based on a cognitive model. We discusse the problems identified in current managerial analysis, and propose a new approach that frames the description of human activities according to a human decision making modle, so that it could provide a better reconstruction of a sequence of event suspected of involving human errors. This sophistcated approach becomes practical for the field application with the support of a computerized aiding system. The model-based event re-construction method is expected to enable the analysts to produce more informative reports, which in turn heop to derive appropriate counter- measures to reduce the possibility of the analyzed human errors.

  • PDF

A Quantitative Assessment of Organizational Factors Affecting Safety Using System Dynamics Model

  • Yu Jaekook;Ahn Namsung;Jae Moosung
    • Nuclear Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.64-72
    • /
    • 2004
  • The purpose of this study is to develop a system dynamics model for the assessment of the organizational and human factors in a nuclear power plant which contribute to nuclear safety. Previous studies can be classified into two major approaches. One is the engineering approach using tools such as ergonomics and Probability Safety Assessment (PSA). The other is the socio-psychology approach. Both have contributed to find organizational and human factors and to present guidelines to lessen human error in plants. However, since these approaches assume that the relationship among factors is independent they do not explain the interactions among the factors or variables in Nuclear Power Plants. To overcome these restrictions, a system dynamics model, which can show cause and effect relationships among factors and quantify the organizational and human factors, has been developed. Handling variables such as the degree of leadership, the number of employees, and workload in each department, users can simulate various situations in nuclear power plant organization. Through simulation, users can get insights to improve safety in plants and to find managerial tools in both organizational and human factors.

An Empirical Study on Evaluation of Performance Shaping Factors on AHP (AHP 기법을 이용한 수행영향인자 평가에 관한 연구)

  • Jung, Kyung-Hee;Byun, Seong-Nam;Kim, Jung-Ho;Heo, Eun-Mee;Park, Hong-Joon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.1
    • /
    • pp.99-108
    • /
    • 2011
  • Almost all companies have paid much attention to the safety management ranging from maintenance to operation even at the stage of designing in order to prevent accidents, but fatal accidents continue to increase throughout the world. In particular, it is essential to systematically prevent such fatal accidents as fire, explosion or leakage of toxic gas at factories in order to not only protect the workers and neighbors but also prevent economic losses and environmental pollution. Though it is well known that accident probability is very low in NPP(Nuclear Power Plants), the reason why many researches are still being performed about the accidents is the results may be so severe. HRA is the main process to make preparation for possibility of human error in designing of the NPP. But those techniques have some problems and limitation as follows; the evaluation sensitivity of those techniques are out of date. And the evaluation of human error is not coupled with the design process. Additionally, the scope of the human error which has to be included in reliability assessment should be expanded. This work focuses on the coincidence of human error and mechanical failure for some important performance shaping factors to propose a method for improving safety effectively of the process industries. In order to apply in these purposes into the thesis, I found 63 critical Performance Shaping Factors of the eight dimensions throughout studies that I executed earlier. In this study, various analysis of opinion of specialists(Personal Factors, Training, Knowledge or Experience, Procedures and Documentation, Information, Communications, HMI, Workplace Design, Quality of Environment, Team Factors) and the guideline for construction of PSF were accomplished. The selected method was AHP which simplifies objective conclusions by maintaining consistency. This research focused on the implementation process of PSF to evaluate the process of PSF at each phase. As a result, we propose an evaluation model of PSF as a tool to find critical problem at each phase and improve on how to resolve the problems found at each phase. This evaluation model makes it possible to extraction of PSF succesfully by presenting the basis of assessment which will be used by enterprises to minimize the trial and error of construction process of PSF.

The Effect of Organizational Influence on Precondition for Unsafe Acts in Pilots - Focused on HFACS - (조직영향이 조종사들의 불안전행위의 전제조건에 미치는 영향 - HFACS를 중심으로)

  • Yu, TaeJung;Song, Byeong-Heum
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.4
    • /
    • pp.161-169
    • /
    • 2017
  • The Human Factors Analysis and Classification System (HFACS) is a general human error framework originally developed and tested within the U.S. military as a tool for investigating and analyzing the human causes of aviation accidents. Based upon Reason's (1990) model of latent and active failures, HFACS addresses human error at all levels of the system, including the condition of aircrew and organizational factors. As a result, this study aims to examine the influence between the latent conditions based on HFACS. This study seeks to verify the factors of "Organizational Influence" effecting the "Precondition for Unsafe Acts" of HFACS. The results of empirical analysis demonstrated that the organizational influence had a positive influence on precondition for unsafe act, especially the "Organizational Climate" of organizational influence had even greater influence on precondition for unsafe acts.

Optimal Inspection Periods of Safety System of Wolsung Nuclear Power Plant Unit 1 with Human Error Consideration (인간실수를 고려한 월성 원자력발전소 안전계통의 최적점검주기에 관한 연구)

  • Mok, Jin-Il;Seong, Poong-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.9-18
    • /
    • 1994
  • The engineered safeguards of Wolsung nuclear power plant unit 1 contain redundant systems of 2-out-of-3 logic which are not operating under normal conditions but are called upon to act when emergency conditions develop. To ensure their operability, the systems are periodically tested. In this work, we develop the unavailability formulae for 2-out-of-3 logic configurations which take into account the failure probability of the channels tested due to human error in the simultaneous testing scheme. We also develop the model for the probability that the reactor is tripped during the surveillance test due to either system failure or human error. We determined the optimal inspection periods of safety systems, taking into account both the unavailability of the safety system and the probability that the reactor is tripped during the surveillance test. We compared the results with the inspection periods currently used at Wolsung NPP Unit 1. As a result, the inspection periods obtained using a minimum human error (8.24 $\times$ 1$^{-6}$ ) are shorter than those currently used in Wolsung NPP unit 1 whereas the inspection periods obtained using a maximum human error are (4.44 $\times$ 10$^{-4}$ ) longer than those used in Wolsung NPP unit 1.

  • PDF

Analysis of Human Factors Behind Maritime Traffic-Related Accidents Using the m-SHEL Model (m-SHEL 모델에 의한 해상교통 관련 사고의 배후 인적 요인 분석에 관한 연구)

  • Keum, Jong-Soo;Yoon, Dae-Gwun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.5
    • /
    • pp.511-518
    • /
    • 2018
  • Research indicates, about 80% of maritime accidents are caused by human error. Further investigation of the human factors behind maritime casualties is essential in order to establish preventive measures. The main purpose of this study is to identify and analyze human factors behind maritime traffic-related accidents using the m-SHEL model. Since the m-SHEL model used in other fields is based on generic human factors, it has expanded in this study to accommodate ship operating systems and define human factors. In addition, the validity of the expanded model was verified by reliability analysis using SPSSWIN. A classified table for this extended m-SHEL model was then used to analyze human factors behind maritime traffic-related accidents extracted from a written verdict by the Korean Maritime Safety Tribunal. Human factors were arranged in the order L, L-E, L-H, L-m, L-L, and L-S. This paper contributes to the prevention of maritime traffic-related accidents caused by human factors by presenting useful analytical results that can be applied to build a maritime safety management system.