• Title/Summary/Keyword: human Hepatitis A Virus

Search Result 109, Processing Time 0.028 seconds

Asunaprevir, a Potent Hepatitis C Virus Protease Inhibitor, Blocks SARS-CoV-2 Propagation

  • Lim, Yun-Sook;Nguyen, Lap P.;Lee, Gun-Hee;Lee, Sung-Geun;Lyoo, Kwang-Soo;Kim, Bumseok;Hwang, Soon B.
    • Molecules and Cells
    • /
    • v.44 no.9
    • /
    • pp.688-695
    • /
    • 2021
  • The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has become a global health concern. Various SARS-CoV-2 vaccines have been developed and are being used for vaccination worldwide. However, no therapeutic agents against coronavirus disease 2019 (COVID-19) have been developed so far; therefore, new therapeutic agents are urgently needed. In the present study, we evaluated several hepatitis C virus direct-acting antivirals as potential candidates for drug repurposing against COVID-19. Theses include asunaprevir (a protease inhibitor), daclatasvir (an NS5A inhibitor), and sofosbuvir (an RNA polymerase inhibitor). We found that asunaprevir, but not sofosbuvir and daclatasvir, markedly inhibited SARS-CoV-2-induced cytopathic effects in Vero E6 cells. Both RNA and protein levels of SARS-CoV-2 were significantly decreased by treatment with asunaprevir. Moreover, asunaprevir profoundly decreased virion release from SARS-CoV-2-infected cells. A pseudoparticle entry assay revealed that asunaprevir blocked SARS-CoV-2 infection at the binding step of the viral life cycle. Furthermore, asunaprevir inhibited SARS-CoV-2 propagation in human lung Calu-3 cells. Collectively, we found that asunaprevir displays broad-spectrum antiviral activity and therefore might be worth developing as a new drug repurposing candidate for COVID-19.

Gene Expression Profiles of HeLa Cells Impacted by Hepatitis C Virus Non-structural Protein NS4B

  • Zheng, Yi;Ye, Lin-Bai;Liu, Jing;Jing, Wei;Timani, Khalid A.;Yang, Xiao-Jun;Yang, Fan;Wang, Wei;Gao, Bo;Wu, Zhen-Hui
    • BMB Reports
    • /
    • v.38 no.2
    • /
    • pp.151-160
    • /
    • 2005
  • By a cDNA array representing 2308 signal transduction related genes, we studied the expression profiles of HeLa cells stably transfected by Hepatitis C virus nonstructural protein 4B (HCV-NS4B). The alterations of the expression of four genes were confirmed by real-time quantitative RT-PCR; and the aldo-keto reductase family 1, member C1 (AKR1C1) enzyme activity was detected in HCV-NS4B transiently transfected HeLa cells and Huh-7, a human hepatoma cell line. Of the 2,308 genes we examined, 34 were up-regulated and 56 were down-regulated. These 90 genes involved oncogenes, tumor suppressors, cell receptors, complements, adhesions, transcription and translation, cytoskeletion and cellular stress. The expression profiling suggested that multiple regulatory pathways were affected by HCV-NS4B directly or indirectly. And since these genes are related to carcinogenesis, host defense system and cell homeostatic mechanism, we can conclude that HCV-NS4B could play some important roles in the pathogenesis mechanism of HCV.

Putative Secondary Structure of Human Hepatitis B Viral X mRNA

  • Kim, Ha-Dong;Choi, Yoon-Chul;Lee, Bum-Yong;Junn, Eun-Sung;Ahn, Jeong-Keun;Kang, Chang-Won;Park, In-Won
    • BMB Reports
    • /
    • v.28 no.6
    • /
    • pp.509-514
    • /
    • 1995
  • A putative secondary structure of the mRNA for the human hepatitis B virus (HBV) X gene is proposed based on not only chemical and enzymatic determination of its single- and double-stranded regions but also selection by the computer program MFOLD for energy minimum conformation under the constraints that the experimentally determined nucleotides were forced or prohibited to base pair. An RNA of 536 nucleotides including the 461-nucleotide HBV X mRNA sequence was synthesized in vitro by the phage T7 RNA polymerase transcription. The thermally renatured transcripts were subjected to chemical modifications with dimethylsulfate and kethoxal and enzymatic hydrolysis with single strand-specific RNase T1 and double strand-specific RNase V1, separately. The sites of modification and cleavage were detected by reverse transcriptase extension of 4 different primers. Many nucleotides could be assigned with high confidence, twenty in double-stranded and thirty-seven in Single-stranded regions. These nucleotides were forced and prohibited, respectively, to base pair in running the recursive RNA folding program MFOLD. The results suggest that 6 different regions (5 within X mRNA) of 14~23 nucleotides are Single-stranded. This putative structure provides a good working model and suggests potential target sites for antisense and ribozyme inhibitors and hybridization probes for the HBV X mRNA.

  • PDF

Detection and genetic analysis of zoonotic hepatitis E virus, rotavirus, and sapovirus in pigs

  • Lyoo, Eu Lim;Park, Byung-Joo;Ahn, Hee-Seop;Han, Sang-Hoon;Go, Hyeon-Jeong;Kim, Dong-Hwi;Lee, Joong-Bok;Park, Seung-Yong;Song, Chang-Seon;Lee, Sang-Won;Choi, In-Soo
    • Korean Journal of Veterinary Research
    • /
    • v.60 no.2
    • /
    • pp.61-68
    • /
    • 2020
  • The zoonotic transmission of viral diseases to humans is a serious public health concern. Pigs are frequently a major reservoir for several zoonotic viral diseases. Therefore, periodic surveillance is needed to determine the infection rates of zoonotic diseases in domestic pigs. Hepatitis E virus (HEV), rotavirus, sapovirus (SaV), and norovirus (NoV) are potential zoonotic viruses. In this study, 296 fecal samples were collected from weaned piglets and growing pigs in 13 swine farms, and the viral RNA was extracted. Partial viral genomes were amplified by reverse transcription-polymerase chain reaction (PCR) or nested-PCR using virus-specific primer sets under different PCR conditions. HEV-3, rotavirus A, and SaV genogoup 3 were detected from 11.5, 2.7, and 3.0% of the samples, respectively. On the other hand, NoV was not detected in any of the samples. Genetic analysis indicated that the nucleotide sequences of swine HEV-3 and rotavirus A detected in this study were closely related to those of human isolates. However, swine SaV was distant from the human strains. These results suggest that HEV-3 and rotavirus A can be transmitted from pigs to humans. Therefore, strict preventive measures should be implemented by workers in the swine industry to prevent infections with HEV-3 and rotavirus A excreted from pigs.

The Interaction between HCV-Infected huh7.5 Cells and HCV-Specific T Cells (C형 간염 바이러스 감염 간암 세포주와 T 림프구의 상호작용에 대한 연구)

  • Kang, Hyojeung;Cho, Hyosun
    • Korean Journal of Microbiology
    • /
    • v.50 no.2
    • /
    • pp.169-172
    • /
    • 2014
  • Recently, Hepatitis C virus (HCV) replication system has been established using human hepatoma cells (huh cell) and a variety of HCV clones. In this study, we established an infectious HCV replication system using huh7.5 cells and J6/JFH1 clone (genotype 2a). In addition, we investigated the antigen presentation capability of HCV-infected huh7.5 cells to HCV-specific T cells. Interestingly, HCV-infected huh7.5 cells were not capable of activating HCV-specific T cells. However, huh7.5 cells stimulated by exogenous HCV peptide were able to activate HCV-specific T cells, which was shown to produce TNF-${\alpha}$ and IFN-${\gamma}$. We further examined if HCV infection has an inhibitory effect on the expression of MHC class I molecule of huh7.5 cells. We found that HCV infection did not change the expression level of MHC class I molecule on huh7.5 cells.

Virus Inactivation Processes for the Manufacture of Human Acellular Dermal Matrix (인체이식용 무세포 진피 제조를 위한 바이러스 불활화 공정)

  • Bae, Jung-Eun;Kim, Jin-Young;Ahn, Jae-Hyoung;Choi, Da-Mi;Jeong, Hyo-Sun;Lee, Dong-Hyuck;Kim, In-Seop
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.2
    • /
    • pp.168-176
    • /
    • 2010
  • Acellular dermal matrix (ADM), produced by decellularization from human cadaveric skin, has been used for various biomedical applications. A manufacturing process for ADM ($SureDerm^{TM}$) using tri-n-butyl phospahate (TnBP) and deoxycholic acids as the decellularization solution has been developed. The manufacturing process for $SureDerm^{TM}$ has 70% ethanol treatment and ethylene oxide gas sterilization for inactivating infectious microorganisms. The purpose of this study was to examine the efficacy of the 70% ethanol treatment, decellularization process using 0.1% TnBP and 2% deoxycholic acids, and EO gas sterilization process in the inactivation of viruses. A variety of experimental model viruses for human pathogens, including the human immunodeficiency virus type 1 (HIV-1), bovine herpes virus (BHV), bovine viral diarrhoea virus (BVDV), hepatitis A virus (HAV), and porcine parvovirus (PPV) were all selected for this study. Enveloped viruses such as HIV-1, BHV, and BVDV were effectively inactivated to undetectable levels by 70% ethanol treatment. However HAV and PPV showed high resistance to 70% ethanol treatment with the log reduction factors of 1.85 and 1.15, respectively. HIV-1, BHV, and BVDV were effectively inactivated to undetectable levels by decellularization process. All the viruses tested were completely inactivated to undetectable levels by EO gas treatment. The cumulative log reduction factors of HIV-1, BHV, BVDV, HAV, and PPV were $\geq12.71$, $\geq18.08$, $\geq14.92$, $\geq6.57$, and $\geq7.18$, respectively. These results indicate that the production process for $SureDerm^{TM}$ has a sufficient virus-reducing capacity to achieve a high margin of the virus safety.

Immunization schedule Recommended by Korean Pediatric Society, 2008 (2008년 대한소아과학회 예방접종 스케줄)

  • Lee, Hoan Jong
    • Pediatric Infection and Vaccine
    • /
    • v.15 no.1
    • /
    • pp.1-4
    • /
    • 2008
  • Immunizations are among the most cost-effective and widely used public health interventions. This is a report a revision of recommendation of immunization for children by Korean Pediatric Society. Immunization. Vaccines were divided into 4 groups. 1) Vaccines that are recommended to all infants and children (BCG, hepatitis B vaccine, DTaP, Td, Polio vaccine, Japanese encephalitis vaccine, MMR, varicella vaccine, influenza vaccine [6-23 months of age], H. influenzae type b vaccine), 2) those that can be administered to all infants and children, but decision of administration is made by parents (pneumococcal conjugate vaccine, hepatitis A vaccine, influenza vaccine [healthy children ${\geq}24$ months of age], rotavirus vaccine, human papilloma virus vaccine), 3) those that should be given to high risk group (pneumococcal polysaccharide vaccine [high risk patients ${\geq}24$ months of age], influenza vaccine [high risk patients ${\geq}24$ months of age], typhoid vaccine), and 4) those administered for control of outbreaks or prevention of emerging infectious diseases. Immunization schedule recommended by Korean Pediatric Society in 2008 is presented.

  • PDF

Expression of Phospholipase A2 Receptor in Pediatric Hepatitis B Virus-Related Membranous Nephropathy

  • Choi, Sung-Eun;Bae, Yoon Sung;Lee, Keum Hwa;Shin, Jae Il;Jeong, Hyeon Joo;Lim, Beom Jin
    • Childhood Kidney Diseases
    • /
    • v.24 no.1
    • /
    • pp.36-41
    • /
    • 2020
  • Purpose: Hepatitis B virus (HBV) infection is among etiologies of secondary membranous nephropathy (MN) in pediatric patients. We evaluated expression of phospholipase A2 receptor (PLA2R), a specific target antigen of primary MN, in pediatric HBV-related MN. Methods: We retrospectively reviewed patients with biopsy-proven HBV-related MN from the renal biopsy registry and electronic medical records of Severance Hospital, Seoul, Korea, from 1993 to 2004. Paraffin-embedded human kidney tissues were retrieved and immunohistochemically stained for PLA2R. Results: Ten pediatric patients with 13 biopsied specimens were reviewed. The predominant pathological stage was stage II-III, and second was stage II. The intensity of staining for IgG was greatest, with less intense staining for IgM, IgA, C3, C4, and C1q. All the patients had angiotensin-converting enzyme inhibitor combined with glucocorticoid, and four patients converted to cyclosporine treatment from glucocorticoid monotherapy. Urinalysis of all the patients normalized after variable period. PLA2R staining was demonstrated in the outer glomerulus in 3 out of 13 biopsies, 2 of which were obtained from the same patient over a 5-year interval. Conclusions: PLA2R was expressed in a small number of cases diagnosed as pediatric HBV-related MN, indicating that some HBV-related MN cases may be primary MN concurrent with HBV infection.

THE REVIEW OF TRANSMISSION OF INFECTIOUS DISEASE IN HUMAN TISSUE TRANSPLANTATION: PART I ALLOGENIC BONE (동종조직이식술 시 전염성질환의 이환가능성에 대한 고찰 I : 동종골조직)

  • Lee, Eun-Young;Kim, Kyoung-Won;Um, In-Woong
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.28 no.4
    • /
    • pp.365-370
    • /
    • 2006
  • Viral, bacterial and fungal infections can be transmitted via allografts such as bone, skin, cornea and cardiovascular tissues. Allogenic bone grafts have possibility of transmission of hepatitis C, human immunodeficiency virus (HIV-1), human T-Cell leukaemia virus (HTLV), tuberculosis and other bacterias. The tissue bank should have a policy for obtaining information from the patient's medical report as to whether the donor had risk factors for infectious diseases. Over the past several years, improvements in donor screening criteria, such as excluding potential donor with "high risk" for HIV-1 and hepatitis infection, and donor blood testing result in the reduction of transmission of these diseases. During tissue processing, many allografts are exposed to antibiotics, disinfectants and terminal sterilization such as irradiation, which further reduce or remove the risk of transmitting diseases. Because the effectiveness of some tissue grafts such as, fresh frozen osteochondral grafts, depends on cellular viability, not all can be subjected to sterilization and processing steps and, therefore, the risk of transmission of infectious disease remains. This article is review of the transmission of considering infectious disease in allogenic bone transplantation and the processing steps of reducing the risk. The risk of viral transmission in allografts can be reduced in several standards. The most important are donor-screening tests and the removal of blood and soft tissues by processing steps under the aseptic environment. In conclusion, final sterilizations including the irradiation, can be establish the safety of allografts.

Generation of Transgenic Chickens Regulating hEPO Gene Expression (hEPO 유전자의 발현이 조절되는 형질전환 닭의 생산)

  • Koo, Bon-Chul;Kwon, Mo-Sun;Kim, Te-Oan
    • Reproductive and Developmental Biology
    • /
    • v.34 no.3
    • /
    • pp.193-199
    • /
    • 2010
  • We report here the production of transgenic chickens that can regulate human erythropoietin (hEPO) gene expression. The glycoprotein hormone hEPO is an essential for viability and growth of the erythrocytic progenitors. Retrovirus vector system used in this study has two features including tetracycline-controllable promoter and woodchuck hepatitis virus posttranscriptional regulator element (WPRE). The former is for to reduce the possibility of physiological disturbance due to constitutional and unregulated expression of hEPO gene in the transgenic chicken. The latter is for maximum expression of the foreign gene when we turn-on the gene expression. A replication-defective Moloney murine leukemia virus (MoMLV)-based vectors packaged with vesicular stomatitis virus G glycoprotein (VSV-G) was injected beneath the blastoderm of non-incubated chicken embryos (stage X). Out of 325 injected eggs, 28 chicks hatched after 21 days of incubation and 16 hatched chicks were found to express the hEPO gene delivered by the vector. The biological activity of the recombinant hEPO in transgenic chicken serum was comparable to its commercially available counterpart. The recombinant hEPO in transgenic chicken serum had N- and O-linked carbohydrate simillar to that produced from in vitro cultured cells transformed with hEPO gene.