• Title/Summary/Keyword: host fungi

Search Result 252, Processing Time 0.023 seconds

Mycoparasitism of Acremonium strictum BCP on Botrytis cinerea, the Gray Mold Pathogen

  • Choi, Gyung-Ja;Kim, Jin-Cheol;Jang, Kyoung-Soo;Cho, Kwang-Yun;Kim, Heung-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.167-170
    • /
    • 2008
  • A fungal strain BCP, which parasitizes Botrytis cinerea gray mold pathogen, was isolated and identified as Acremonium strictum. BCP strain overgrew the colonies of B. cinerea and caused severe lysis of the host hyphae. Frequent penetration and hyphal growth of A. strictum BCP inside the mycelia of B. cinerea were observed under light microscopy. In addition, some morphological abnormalities such as granulation and vacuolation of the cytoplasm were observed in mycelia and spores of B. cinerea. In dual culture test, A. strictum BCP strongly inhibited the mycelial growth of several plant pathogenic fungi as well as B. cinerea. To our knowledge, this is the first report on mycoparasitism of Acremonium species on B. cinerea.

Molecular Mechanisms Involved in Bacterial Speck Disease Resistance of Tomato

  • Kim, Young-Jin;Gregory B. Martin
    • The Plant Pathology Journal
    • /
    • v.20 no.1
    • /
    • pp.7-12
    • /
    • 2004
  • An important recent advance in the field of plant-microbe interactions has been the cloning of genes that confer resistance to specific viruses, bacteria, fungi or insects. Disease resistance (R) genes encode proteins with predicted structural motifs consistent with them having roles in signal recognition and transduction. Plant disease resistance is the result of an innate host defense mechanism, which relies on the ability of plant to recognize pathogen invasion and efficiently mount defense responses. In tomato, resistance to the pathogen Pseudomonas syringae pv. tomato is mediated by the specific recognition between the tomato serine/threonine kinase Pto and bacterial protein AvrPto or AvrPtoB. This recognition event initiates signaling events that lead to defense responses including an oxidative burst, the hypersensitive response (HR), and expression of pathogenesis- related genes.

Regulation of Pathogenesis by Light in Cercospora zeae-maydis: An Updated Perspective

  • Kim, Hun;Ridenour, John B.;Dunkle, Larry D.;Bluhm, Burton H.
    • The Plant Pathology Journal
    • /
    • v.27 no.2
    • /
    • pp.103-109
    • /
    • 2011
  • The fungal genus Cercospora is one of the most ubiquitous groups of plant pathogenic fungi, and gray leaf spot caused by C. zeae-maydis is one of the most widespread and damaging foliar diseases of maize in the world. While light has been implicated as a critical environmental regulator of pathogenesis in C. zeae-maydis, the relationship between light and the development of disease is not fully understood. Recent discoveries have provided new insights into how light influences pathogenesis and morphogenesis in C. zeae-maydis, particularly at the molecular level. This review is focused on integrating old and new information to provide an updated perspective of how light influences pathogenesis, and provides a working model to explain some of the underlying molecular mechanisms. Ultimately, a thorough molecular-level understanding of how light regulates pathogenesis will augment efforts to manage gray leaf spot by improving host resistance and disease management strategies.

Biological Control of Some Serious Weeds in Dakahlia District. II. Mycoherbicial Production and Physiological Host Responses

  • Abdel-Fattah, Gamal M.
    • Mycobiology
    • /
    • v.30 no.2
    • /
    • pp.96-101
    • /
    • 2002
  • Four pathogenic fungal isolates belonging to different genera including Alternaria, Fusarium and Curvularia were isolated from selected diseased weeds growing in the fields in Dakahalia district. The inoculum of these pathogenic fungi specific to weeds were cultured, standardized and formulated as alginate pellets containing mycelium plus culture filtrate. These mycoherbicides were evaluated for disease severity(DS). Maximum DS was obtained with the alginate pellets of mycelium filtrate Fusarium solani. Physiological changes of the treated weed were determined 5 aiid 10 days after treatments. As compared to the healthy weeds, all mycoherbicide formulations significantly decreased the amount of photosynthetic pigments and subsequently soluble and insoluble sugars in the infected weeds. The mycoherbicide formulation of F. solani had the greatest effect on lowering to the abovementioned amount in the leaves of Chenopodium murale. Generally, treatment of weed leaves with the specific mycoherbicide led to a highly significant increase in total phenol content when compared to the healthy control weed. C. murale infected with the mycoherbicide formulation of F. solani had higher levels of phenolic compounds than those other treated weeds particularly after 10 days of inoculation.

Nuclear Effectors in Plant Pathogenic Fungi

  • Surajit De Mandal;Junhyun Jeon
    • Mycobiology
    • /
    • v.50 no.5
    • /
    • pp.259-268
    • /
    • 2022
  • The nuclear import of proteins is a fundamental process in the eukaryotes including plant. It has become evident that such basic process is exploited by nuclear effectors that contain nuclear localization signal (NLS) and are secreted into host cells by fungal pathogens of plants. However, only a handful of nuclear effectors have been known and characterized to date. Here, we first summarize the types of NLSs and prediction tools available, and then delineate examples of fungal nuclear effectors and their roles in pathogenesis. Based on the knowledge on NLSs and what has been gleaned from the known nuclear effectors, we point out the gaps in our understanding of fungal nuclear effectors that need to be filled in the future researches.

Isolation of Endophytic Fungi Capable of Plant Growth Promotion from Monocots Inhabited in the Coastal Sand Dunes of Korea (사구에 서식하는 단자엽식물로부터 식물 생장 촉진 활성 내생 진균류의 분리)

  • Khan, Sumera Afzal;Hamayun, Muhammad;Rim, Soon-Ok;Lee, In-Jung;Seu, Jong-Chul;Choo, Yeon-Sik;Jin, Ing-Nyol;Kim, Sang-Dal;Lee, In-Koo;Kim, Jong-Guk
    • Journal of Life Science
    • /
    • v.18 no.10
    • /
    • pp.1355-1359
    • /
    • 2008
  • Endophytic fungi predominantly inhabit grasses, and produce a variety of beneficial metabolites for plant growth, as well as help their hosts against pathogens and herbivores. Current study was focused on plant growth promoting activity of endophytic fungi inhabited in the roots of sand dune grasses. We collected 49 fungal isolates from the roots of four most common sand dune grasses and screened them for their growth promoting capacity. Results showed that 37 fungal isolates (75.5%) promoted plant height and shoot length of waito-c rice, 11 fungal isolates (22.5%) suppressed it, while 1 fungus (2%) showed no effect on the growth attributes. The fungal strain Gibberella fujikuroi, along with distilled water and Czapek broth medium, were taken as control for this experiment. It was concluded that a major proportion of endophytic fungi inhabited in the sand dune plants produce metabolites, and thus help in growth and development of the host plant.

Endophytic Trichoderma gamsii YIM PH30019: a promising biocontrol agent with hyperosmolar, mycoparasitism, and antagonistic activities of induced volatile organic compounds on root-rot pathogenic fungi of Panax notoginseng

  • Chen, Jin-Lian;Sun, Shi-Zhong;Miao, Cui-Ping;Wu, Kai;Chen, You-Wei;Xu, Li-Hua;Guan, Hui-Lin;Zhao, Li-Xing
    • Journal of Ginseng Research
    • /
    • v.40 no.4
    • /
    • pp.315-324
    • /
    • 2016
  • Background: Biocontrol agents are regarded as promising and environmental friendly approaches as agrochemicals for phytodiseases that cause serious environmental and health problems. Trichoderma species have been widely used in suppression of soil-borne pathogens. In this study, an endophytic fungus, Trichoderma gamsii YIM PH30019, from healthy Panax notoginseng root was investigated for its biocontrol potential. Methods: In vitro detached healthy roots, and pot and field experiments were used to investigate the pathogenicity and biocontrol efficacy of T. gamsii YIM PH30019 to the host plant. The antagonistic mechanisms against test phytopathogens were analyzed using dual culture, scanning electron microscopy, and volatile organic compounds (VOCs). Tolerance to chemical fertilizers was also tested in a series of concentrations. Results: The results indicated that T. gamsii YIM PH30019 was nonpathogenic to the host, presented appreciable biocontrol efficacy, and could tolerate chemical fertilizer concentrations of up to 20%. T. gamsii YIM PH30019 displayed antagonistic activities against the pathogenic fungi of P. notoginseng via production of VOCs. On the basis of gas chromatography-mass spectrometry, VOCs were identified as dimethyl disulfide, dibenzofuran, methanethiol, ketones, etc., which are effective ingredients for antagonistic activity. T. gamsii YIM PH30019 was able to improve the seedlings' emergence and protect P. notoginseng plants from soil-borne disease in the continuous cropping field tests. Conclusion: The results suggest that the endophytic fungus T. gamsii YIM PH30019 may have a good potential as a biological control agent against notoginseng phytodiseases and can provide a clue to further illuminate the interactions between Trichoderma and phytopathogens.

Diversity of Endophytic Fungi Isolated from Hydrophytes in Wetland of Nakdong River (낙동강 지류의 하천 습지에 자생하는 수생식물에서 분리된 내생균류의 다양성)

  • You, Young-Hyun;Lee, Myung-Chul;Kim, Jong-Guk
    • The Korean Journal of Mycology
    • /
    • v.43 no.1
    • /
    • pp.13-19
    • /
    • 2015
  • Endophytic fungal strains were isolated from 5 aquatic plant species (Trapa japonica, Miscanthus sacchariflorus, Oenanthe javanica, Typha orientalis and Zizania latifolia) native to river wetland of tributary in Nakdong river. Total 34 strains were purely isolated, and then its internal transcribed spacer (ITS) regions were amplified. After that, phylogenetic analysis based on ITS sequences and deduction of diversity indices were done. Fungal isolates were belonged to 17 genera, concretely in Acremonium, Alternaria, Aspergillus, Cladosporium, Emericellopsis, Fusarium, Galactomyces, Leptosphaeria, Microsphaeropsis, Penicillium, Peyronellaea, Phoma, Pseudeurotium, Rhizomucor, Talaromyces, Trematosphaeria and Zalerion. Especially, fungal isolates were distributed intensively in genera Alternaria and Talaromyces. This study deals with the diversity of endophytic fungal species that showing symbiotic relationship with their host aquatic plants.

First report of white rot on a wild gu1ic(Allium monanthum) caused by Sclerotium cepivorum and Sclerotium sp.

  • Cho, Weon-Dae;Hong, Sung-Ki;Kim, Yong-Ki;Kim, Woo-Sik;Jee, Hyeong-Jin
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.131.2-132
    • /
    • 2003
  • White rot on garlic caused by Sclerotium cepivorum firstly occurred at Goheoung, Jeonnam in 1998. Thereafter, the disease rapidly spread throughout the country except Gangwon and became a major limiting factor for the cultivation of various Allium species such as garlic, onion, and welsh onion. The disease that has not been reported on a wild garlic(Allium monanthum) previously occurred severely at Seosan, Choongnam in 2003. Among cultivation areas in the region, 10.7% were infected by the disease and the ratio of diseased plant reached up to 55.0% in some heavily infected fields. Two species of Sclerotium were consistently isolated from infected samples and identified as S. cepivorum or another Sclerotium sp. Averaged size of sclerotium of the former was 455.0x562.2 urn, while the later was 374.4${\times}$347.2$\mu\textrm{m}$. Patogenicity to Allium species and mycological characteristics such as sclerotium size, growth temperature, and microconidia of the fungi were similar to those reported on other Allium species previously. Consequently, the wild garlic is a newly reported host of the two pathogenic fungi in Korea.

  • PDF

Biocontrol Potential of Fungal Endophytes against Fusarium oxysporum f. sp. cucumerinum Causing Wilt in Cucumber

  • Abro, Manzoor Ali;Sun, Xiang;Li, Xingchun;Jatoi, Ghulam Hussain;Guo, Liang-Dong
    • The Plant Pathology Journal
    • /
    • v.35 no.6
    • /
    • pp.598-608
    • /
    • 2019
  • Endophytic fungi have received much attention as plant growth promoters as well as biological control agents against many plant pathogens. In this study, 30 endophytic fungal species, isolated from various plants in China, were evaluated using in vitro dual culture assay against Fusarium oxysporum f. sp. cucumerinum, causing wilt in cucumber. The results of the present study clearly showed that all the 30 endophytic fungal isolates were highly capable of inhibiting the mycelial colony growth of Fusarium oxysporum f. sp. cucumerinum with inhibition % over 66% as compared to control treatments. Among all of them, 5 isolates were highly effective such as, Penicillium sp., Guignardia mangiferae, Hypocrea sp., Neurospora sp., Eupenicillium javanicum, and Lasiodiplodia theobromae, respectively. The Penicillium sp. and Hypocrea sp. were highly effective as compared to other isolates. From in vitro results 10 best isolates were selected for greenhouse studies. The results of the greenhouse studies showed that among all of them 3 endophytic fungal isolates successfully suppressed wilt severity when co-inoculation with pathogen Fusarium. oxysporum f. sp. cucumerinum. The endophytic fungi also enhanced plant growth parameters of the host plants, the antagonistic fungal isolates increased over all plant height, aerial fresh, and dry weight as compared to control.