Browse > Article
http://dx.doi.org/10.1080/12298093.2022.2118928

Nuclear Effectors in Plant Pathogenic Fungi  

Surajit De Mandal (Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University)
Junhyun Jeon (Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University)
Publication Information
Mycobiology / v.50, no.5, 2022 , pp. 259-268 More about this Journal
Abstract
The nuclear import of proteins is a fundamental process in the eukaryotes including plant. It has become evident that such basic process is exploited by nuclear effectors that contain nuclear localization signal (NLS) and are secreted into host cells by fungal pathogens of plants. However, only a handful of nuclear effectors have been known and characterized to date. Here, we first summarize the types of NLSs and prediction tools available, and then delineate examples of fungal nuclear effectors and their roles in pathogenesis. Based on the knowledge on NLSs and what has been gleaned from the known nuclear effectors, we point out the gaps in our understanding of fungal nuclear effectors that need to be filled in the future researches.
Keywords
Nuclear localization sequence (NLS); effectors; fungal pathogenesis;
Citations & Related Records
Times Cited By KSCI : 10  (Citation Analysis)
연도 인용수 순위
1 Strambio-De-Castillia C, Niepel M, Rout MP. The nuclear pore complex: bridging nuclear transport and gene regulation. Nat Rev Mol Cell Biol. 2010;11(7):490-501.   DOI
2 Cronshaw JM, Krutchinsky AN, Zhang W, et al. Proteomic analysis of the mammalian nuclear pore complex. J Cell Biol. 2002;158(5):915-927.   DOI
3 Rout MP, Aitchison JD, Suprapto A, et al. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J Cell Biol. 2000; 148(4):635-51651.   DOI
4 Lu J, Wu T, Zhang B, et al. Types of nuclear localization signals and mechanisms of protein import into the nucleus. Cell Commun Signal. 2021;19(1):1-10.   DOI
5 Sonah H, Deshmukh RK, B elanger RR. Computational prediction of effector proteins in fungi: opportunities and challenges. Front Plant Sci. 2016;7:126.
6 Rivas S, Genin S. A plethora of virulence strategies hidden behind nuclear targeting of microbial effectors. Front Plant Sci. 2011;2:104.
7 Petre B, Kamoun S. How do filamentous pathogens deliver effector proteins into plant cells? PLoS Biol. 2014;12(2):e1001801.
8 He Q, McLellan H, Boevink PC, et al. All roads lead to susceptibility: the many modes of action of fungal and oomycete intracellular effectors. Plant Commun. 2020;1(4):100050.
9 Presti LL, Lanver D, Schweizer G, et al. Fungal effectors and plant susceptibility. Annu Rev Plant Biol. 2015;66(1):513-545.   DOI
10 Jaswal R, Kiran K, Rajarammohan S, et al. Effector biology of biotrophic plant fungal pathogens: Current advances and future prospects. Microbiol Res. 2020;241:126567.
11 Figueroa M, Ortiz D, Henningsen EC. Tactics of host manipulation by intracellular effectors from plant pathogenic fungi. Curr Opin Plant Biol. 2021;62:102054.
12 Tariqjaveed M, Mateen A, Wang S, et al. Versatile effectors of phytopathogenic fungi target host immunity. J Integr Plant Biol. 2021;63(11):1856-1873.   DOI
13 Wu Y, Xie L, Jiang Y, et al. Prediction of effector proteins and their implications in pathogenicity of phytopathogenic filamentous fungi: a review. Int J Biol Macromol. 2022;206:188-202.   DOI
14 Qin J, Wang K, Sun L, et al. The plant-specific transcription factors CBP60g and SARD1 are targeted by a Verticillium secretory protein VdSCP41 to modulate immunity. elife. 2018;7:e34902.
15 Kim S, Kim C-Y, Park S-Y, et al. Two nuclear effectors of the rice blast fungus modulate host immunity via transcriptional reprogramming. Nat Commun. 2020;11(1):1-11.
16 Kosugi S, Hasebe M, Matsumura N, et al. Six classes of nuclear localization signals specific to different binding grooves of importin α. J Biol Chem. 2009;284(1):478-485.
17 Fontes MRM, Teh T, Kobe B. Structural basis of recognition of monopartite and bipartite nuclear localization sequences by mammalian importin-a. J Mol Biol. 2000;297(5):1183-1194.   DOI
18 Christie M, Chang C-W, Rona G, et al. Structural biology and regulation of protein import into the nucleus. J Mol Biol. 2016;428(10 Pt A):2060-2090.   DOI
19 Bernardes NE, Fukuda CA, da Silva TD, et al. Comparative study of the interactions between fungal transcription factor nuclear localization sequences with mammalian and fungal importin-alpha. Sci Rep. 2020;10(1):1-13.   DOI
20 Marfori M, Mynott A, Ellis JJ, et al. Molecular basis for specificity of nuclear import and prediction of nuclear localization. Biochim Biophys Acta. 2011;1813(9):1562-1577.   DOI
21 Lee BJ, Cansizoglu AE, Suel KE, et al. Rules for € nuclear localization sequence recognition by karyopherinβ2. Cell. 2006;126(3):543-558.   DOI
22 Chen C-F, Li S, Chen Y, et al. The nuclear localization sequences of the BRCA1 protein interact with the importin-α subunit of the nuclear transport signal receptor. J Biol Chem. 1996;271(51):32863-32868.   DOI
23 Wang L, Li M, Cai M, et al. A PY-nuclear localization signal is required for nuclear accumulation of HCMV UL79 protein. Med Microbiol Immunol. 2012;201(3):381-387.   DOI
24 Steidl S, Tuncher A, Goda H, et al. A single subunit of a heterotrimeric CCAAT-binding complex carries a nuclear localization signal: piggy back transport of the pre-assembled complex to the nucleus. J Mol Biol. 2004;342(2):515-524.   DOI
25 Imagawa M, Sakaue R, Tanabe A, et al. Two nuclear localization signals are required for nuclear translocation of nuclear factor 1-A. FEBS Lett. 2000;484(2):118-124.   DOI
26 Yano K-i, Morotomi K, Saito H, et al. Nuclear localization signals of the BRCA2 protein. Biochem Biophys Res Commun. 2000;270(1):171-175.   DOI
27 Burich R, Lei M. Two bipartite NLSs mediate constitutive nuclear localization of Mcm10. Curr Genet. 2003;44(4):195-201.
28 Tuncher A, Spr € ote P, Gehrke A, et al. The CCAAT-binding complex of eukaryotes: evolution of a second NLS in the HapB subunit of the filamentous fungus Aspergillus nidulans despite functional conservation at the molecular level between yeast, A. nidulans and human. J Mol Biol. 2005;352(3):517-533.   DOI
29 Luo M, Pang CWM, Gerken AE, et al. Multiple nuclear localization sequences allow modulation of 5-lipoxygenase nuclear import. Traffic. 2004;5(11):847-854.   DOI
30 Reisenauer MR, Wang SW, Xia Y, et al. Dot1a contains three nuclear localization signals and regulates the epithelial Na + channel (ENaC) at multiple levels. Am J Physiol Renal Physiol. 2010;299(1):F63-F76.   DOI
31 Cokol M, Nair R, Rost B. Finding nuclear localization signals. EMBO Rep. 2000;1(5):411-415.   DOI
32 Nadler SG, Tritschler D, Haffar OK, et al. Differential expression and sequence-specific interaction of karyopherin α with nuclear localization sequences. J Biol Chem. 1997;272(7):4310-4315.   DOI
33 Liu M-T, Hsu T-Y, Chen J-Y, et al. Epstein-Barr virus DNase contains two nuclear localization signals, which are different in sensitivity to the hydrophobic regions. Virology. 1998;247(1):62-73.   DOI
34 Nakai K, Horton P. PSORT: a program for detecting the sorting signals of proteins and predicting their subcellular localization. Trends Biochem Sci. 1999;24(1):34-636.   DOI
35 Nguyen Ba AN, Pogoutse A, Provart N, et al. NLStradamus: a simple hidden markov model for nuclear localization signal prediction. BMC Bioinformatics. 2009;10(1):202-211.
36 Kosugi S, Hasebe M, Tomita M, et al. Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs. Proc Natl Acad Sci USA. 2009;106(25):10171-10176.   DOI
37 Bernhofer M, Goldberg T, Wolf S, et al. NLSdb-major update for database of nuclear localization signals and nuclear export signals. Nucleic Acids Res. 2018;46(D1):D503-D508.   DOI
38 Hicks GR, Raikhel NV. Protein import into the nucleus: an integrated view. Annu Rev Cell Dev Biol. 1995;11(1):155-188.   DOI
39 Brameier M, Krings A, MacCallum RM. NucPred-predicting nuclear localization of proteins. Bioinformatics. 2007;23(9):1159-1160.   DOI
40 Guo Y, Yang Y, Huang Y, et al. Discovering nuclear targeting signal sequence through protein language learning and multivariate analysis. Anal Biochem. 2020;591:113565.
41 Qi M, Link TI, Muller M, et al. A small cysteine-rich protein from the asian soybean rust fungus, Phakopsora pachyrhizi, suppresses plant immunity. PLoS Pathog. 2016;12(9):e1005827.
42 Ahmed MB, Santos K, Sanchez IB, et al. A rust fungal effector binds plant DNA and modulates transcription. Sci Rep. 2018;8(1):1-14.
43 Vargas WA, Sanz-Mart in JM, Rech GE, et al. A fungal effector with host nuclear localization and DNA-binding properties is required for maize anthracnose development. Mol Plant Microbe Interact. 2016;29(2):83-95.   DOI
44 Qi T, Guo J, Liu P, et al. Stripe rust effector PstGSRE1 disrupts nuclear localization of ROS-promoting transcription factor TaLOL2 to defeat ROS-induced defense in wheat. Mol Plant. 2019;12(12):1624-1638.   DOI
45 Wang X, Yang B, Li K, et al. A conserved Puccinia striiformis protein interacts with wheat NPR1 and reduces induction of pathogenesis-related genes in response to pathogens. Mol Plant Microbe Interact. 2016;29(12):977-989.   DOI
46 Redkar A, Hoser R, Schilling L, et al. A secreted effector protein of Ustilago maydis guides maize leaf cells to form tumors. Plant Cell. 2015;27(4):1332-1351.   DOI
47 Chang P, Fan X, Chen J. Function and subcellular localization of Gcn5, a histone acetyltransferase in Candida albicans. Fungal Genet Biol. 2015;81:132-141.   DOI
48 Zhang S, Liang M, Naqvi NI, et al. Phototrophy and starvation-based induction of autophagy upon removal of Gcn5-catalyzed acetylation of Atg7 in Magnaporthe oryzae. Autophagy. 2017;13(8):1318-1330.   DOI
49 Chen X, Duan Y, Qiao F, et al. A secreted fungal effector suppresses rice immunity through host histone hypoacetylation. New Phytologist. 2022;235(5):1977-1994.   DOI
50 Zhu C, Liu J-H, Zhao J-H, et al. A fungal effector suppresses the nuclear export of AGO1-miRNA complex to promote infection in plants. Proc Natl Acad Sci USA. 2022;119(12):e2114583119.
51 Pennington HG, Jones R, Kwon S, et al. The fungal ribonuclease-like effector protein CSEP0064/ BEC1054 represses plant immunity and interferes with degradation of host ribosomal RNA. PLoS Pathog. 2019;15(3):e1007620.
52 Yin CM, Li JJ, Wang D, et al. A secreted ribonuclease effector from Verticillium dahliae localizes in the plant nucleus to modulate host immunity. Molecular Plant Pathology. 2022;23(8):1122-1140.   DOI
53 Singh SK, Verma S, Singh K, et al. The nuclear effector ArPEC25 from the necrotrophic fungus Ascochyta rabiei targets the chickpea transcription factor CaβLIM1a and negatively modulates lignin biosynthesis for host susceptibility. bioRxiv. 2021. DOI:10.1101/2021.09.02.458738   DOI
54 Rafiei V, V el€ez H, Tzelepis G. The phospholipase VlsPLA2 from the plant pathogen Verticillium longisporum is a virulence factor targeting host nuclei and suppressing PTI-related hypersensitive response. bioRxiv. 2022. DOI:10.1101/2022.03.19.484916   DOI
55 Li T, Wu Y, Wang Y, et al. Secretome profiling reveals virulence-associated proteins of Fusarium proliferatum during interaction with banana fruit. Biomolecules. 2019;9(6):246.
56 Hoang CV, Bhaskar CK, Ma L-S. A novel core effector Vp1 promotes fungal colonization and virulence of Ustilago maydis. JoF. 2021;7(8):589.
57 Han Z, Xiong D, Xu Z, et al. The Cytospora chrysosperma virulence effector CcCAP1 mainly localizes to the plant nucleus to suppress plant immune responses. Msphere. 2021;6(1):e00883-00820.
58 Xu Z, Xiong D, Han Z, et al. A putative effector CcSp84 of Cytospora chrysosperma localizes to the plant nucleus to trigger plant immunity. IJMS. 2022;23(3):1614.
59 Liu L, Wang Z, Li J, et al. Verticillium dahliae secreted protein Vd424Y is required for full virulence, targets the nucleus of plant cells, and induces cell death. Mol Plant Pathol. 2021;22(9):1109-1120.   DOI
60 Zhang L, Ni H, Du X, et al. The Verticillium-specific protein VdSCP7 localizes to the plant nucleus and modulates immunity to fungal infections. New Phytol. 2017;215(1):368-381.
61 Voss S, Betz R, Heidt S, et al. RiCRN1, a crinkler effector from the arbuscular mycorrhizal fungus Rhizophagus irregularis, functions in arbuscule development. Front Microbiol. 2018;9:2068.
62 Kanneganti TD, Bai X, Tsai CW, et al. A functional genetic assay for nuclear trafficking in plants. Plant J. 2007;50(1):149-158.   DOI
63 Chen T, Peng J, Yin X, et al. Importin-as are required for the nuclear localization and function of the Plasmopara viticola effector PvAVH53. Hortic Res. 2021;8(1):46.
64 Scott MS, Boisvert F-M, McDowall MD, et al. Characterization and prediction of protein nucleolar localization sequences. Nucleic Acids Res. 2010;38(21):7388-7399.   DOI
65 Caly L, Druce JD, Catton MG, et al. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res. 2020;178:104787.
66 Wolff B, Sanglier J-J, Wang Y. Leptomycin B is an inhibitor of nuclear export: inhibition of nucleocytoplasmic translocation of the human immunodeficiency virus type 1 (HIV-1) rev protein and rev-dependent mRNA. Chem Biol. 1997;4(2):139-147.   DOI