DOI QR코드

DOI QR Code

Regulation of Pathogenesis by Light in Cercospora zeae-maydis: An Updated Perspective

  • Kim, Hun (Department of Plant Pathology, University of Arkansas) ;
  • Ridenour, John B. (Department of Plant Pathology, University of Arkansas) ;
  • Dunkle, Larry D. (Crop Production & Pest Control Research Unit, USDA-ARS, Purdue University) ;
  • Bluhm, Burton H. (Department of Plant Pathology, University of Arkansas)
  • Received : 2010.11.25
  • Accepted : 2011.02.25
  • Published : 2011.06.30

Abstract

The fungal genus Cercospora is one of the most ubiquitous groups of plant pathogenic fungi, and gray leaf spot caused by C. zeae-maydis is one of the most widespread and damaging foliar diseases of maize in the world. While light has been implicated as a critical environmental regulator of pathogenesis in C. zeae-maydis, the relationship between light and the development of disease is not fully understood. Recent discoveries have provided new insights into how light influences pathogenesis and morphogenesis in C. zeae-maydis, particularly at the molecular level. This review is focused on integrating old and new information to provide an updated perspective of how light influences pathogenesis, and provides a working model to explain some of the underlying molecular mechanisms. Ultimately, a thorough molecular-level understanding of how light regulates pathogenesis will augment efforts to manage gray leaf spot by improving host resistance and disease management strategies.

Keywords

References

  1. Bahn, Y. S., Xue, C., Idnurm, A., Rutherford, J. C., Heitman, J. and Cardenas, M. E. 2007. Sensing the environment: lessons from fungi. Nat. Rev. Microbiol. 5:57-69. https://doi.org/10.1038/nrmicro1578
  2. Ballario, P., Vittorioso, P., Magrelli, A., Talora, C., Cabibbo, A. and Macino, G. 1996. White collar-1, a central regulator of blue light responses in Neurospora, is a zinc finger protein. EMBO J. 15:1650-1657.
  3. Ballario, P., Talora, C., Galli, D., Linden, H. and Macino, G. 1998. Roles in dimerization and blue light photoresponse of the PAS and LOV domain of Neurospora crassa white collar proteins. Mol. Microbiol. 29:719-729. https://doi.org/10.1046/j.1365-2958.1998.00955.x
  4. Bechtold, U., Karpinski, S. and Mullineaux, P. 2005. The influence of the light environment and photosynthesis on oxidative signaling responses in plant-biotrophic pathogen interactions. Plant Cell Environ. 28:1046-1055. https://doi.org/10.1111/j.1365-3040.2005.01340.x
  5. Beckman, P. M. and Payne, G. A. 1982. External growth, penetration, and development of Cercospora zeae-maydis in corn leaves. Phytopathology 72:810-815. https://doi.org/10.1094/Phyto-72-810
  6. Beckman, P. M. and Payne, G. A. 1983. Cultural techniques and conditions influencing growth and sporulation of Cercospora zeae-maydis and lesion development in corn. Phytopathology 73:286-289. https://doi.org/10.1094/Phyto-73-286
  7. Bell-Pedersen, D., Garceau, N. and Loros, J. J. 1996. Circadian rhythms in fungi. J. Genetics. 75:387-401. https://doi.org/10.1007/BF02966317
  8. Bieszke, J. A., Spudich, E. N., Scott, K. L., Borkovich, K. A., and Spudich, J. L. 1999. A eukaryotic protein, NOP-1, binds retinal to form an archaeal rhodopsin-like photochemically reactive pigment. Biochemistry 38:14138-14145. https://doi.org/10.1021/bi9916170
  9. Bluhm, B. H., Burnham, A. M. and Dunkle, L. D. 2010. A circadian rhythm regulating hyphal melanization in Cercospora kikuchii. Mycologia 102:1221-1228. https://doi.org/10.3852/09-041
  10. Bluhm, B. H., Dhillon, B., Lindquist, E. A., Kema, G. H. J., Goodwin, S. B. and Dunkle, L. D. 2008. Expressed sequence tags derived from the maize foliar pathogen Cercospora zeae-maydis identify novel genes differentially expressed during vegetative, infectious, and reproductive growth. BMC Genomics 9:523. https://doi.org/10.1186/1471-2164-9-523
  11. Bluhm, B. and Dunkle, L. D. 2008. Phl1 of Cercospora zeaemaydis encodes a member of the photolyase/cryptochrome family involved in UV protection and fungal development. Fungal Gen. Biol. 45:1364-1372. https://doi.org/10.1016/j.fgb.2008.07.005
  12. Blumenstein, A., Vienken, K., Tasler, R., Purschwitz, J., Veith, D., Frankenberg-Dinkel, N. and Fischer, R. 2005. The Aspergillus nidulans phytochrome FphA represses sexual development in red light. Curr. Biol. 15:1833-1838. https://doi.org/10.1016/j.cub.2005.08.061
  13. Borkovich, K. A., Alex, L. A., Yarden, O., Freitag, M., Turner, G. E., Read, N. D., Seiler, S., Bell-Pedersen, D., Paietta, J., Plesofsky, N., Plamann, M., Goodrich-Tanrikulu, M., Schulte, U., Mannhaupt, G., Nargang, F. E., Radford, A., Selitrennikoff, C., Galagan, J. E., Dunlap, J. C., Loros, J. J., et al. 2004. Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol. Mol. Biol. Rev. 68:1-108. https://doi.org/10.1128/MMBR.68.1.1-108.2004
  14. Callahan, T., Rose, M., Meade, M., Ehrenshaft, M. and Upchurch, R. 1999. CFP, the putative cercosporin transporter of Cercospora kikuchii, is required for wild type cercosporin production, resistance, and virulence on soybean. Mol. Plant-Microbe Interact. 12:901-910. https://doi.org/10.1094/MPMI.1999.12.10.901
  15. Chen, H. Q., Lee, M. H. and Chung, K. R. 2007a. Functional characterization of three genes encoding putative oxidoreductases required for cercosporin toxin blosynthesis in the fungus Cercospora nicotianae. Microbiology 153:2781-2790. https://doi.org/10.1099/mic.0.2007/007294-0
  16. Chen, H. Q., Lee, M. H., Daub, M. E. and Chung, K. R. 2007b. Molecular analysis of the cercosporin biosynthetic gene cluster in Cercospora nicotianae. Mol. Microbiol. 64:755-770. https://doi.org/10.1111/j.1365-2958.2007.05689.x
  17. Choquer, M., Lee, M. H., Bau, H. J. and Chung, K. R. 2007. Deletion of a MFS transporter-like gene in Cercospora nicotianae reduces cercosporin toxin accumulation and fungal virulence. FEBS Lett. 581:489-494. https://doi.org/10.1016/j.febslet.2007.01.011
  18. Colhoun, J. 1973. Effects of environmental factors on plant disease. Annu. Rev. Phytopathol. 11:343-364. https://doi.org/10.1146/annurev.py.11.090173.002015
  19. Crosson, S., Rajagopal, S. and Moffat, K. 2003. The LOV domain family: photoresponsive signaling modules coupled to diverse output domains. Biochemistry 42:2-10. https://doi.org/10.1021/bi026978l
  20. Crous, P. W. and Braun, U. 2003. Mycosphaerella and its anamorphs. 1. Names published in Cercospora and Passalora. CBS Biodiversity Series 1:1-571.
  21. Crous, P. W., Groenewald, J. Z., Groenewald, M., Caldwell, P., Braun, U. and Harrington, T. C. 2006. Species of Cercospora associated with grey leaf spot of maize. Stud. Mycol. 55:189-197. https://doi.org/10.3114/sim.55.1.189
  22. Daub, M. E. and Ehrenshaft, M. 2000. The photoactivated Cercospora toxin cercosporin: contributions to plant disease and fundamental biology. Annu. Rev. Phytopathol. 38:461-490. https://doi.org/10.1146/annurev.phyto.38.1.461
  23. Dekkers, K. L., You, B. J., Gowda, V. S., Liao, H. L., Lee, M. H., Bau, J. J., Ueng, P. P. and Chung, K. R. 2007. The Cercospora nicotianae gene encoding dual O-methyltransferase and FAD dependent monooxygenase domains mediates cercosporin toxin biosynthesis. Fungal Genet. Biol. 44:444-454. https://doi.org/10.1016/j.fgb.2006.08.005
  24. Dunkle, L. D. and Levy, M. 2000. Genetic relatedness of African and United States populations of Cercospora zeae-maydis. Phytopathology 90:486-490. https://doi.org/10.1094/PHYTO.2000.90.5.486
  25. Dunlap, J. C. and Loros, J. J. 2006. How fungi keep time: circadian system in Neurospora and other fungi. Curr. Opin. Microbiol. 9:579-587. https://doi.org/10.1016/j.mib.2006.10.008
  26. Estrada, A. F. and Avalos, J. 2008. The White Collar protein WcoA of Fusarium fujikuroi is not essential for photocarotenogenesis, but is involved in the regulation of secondary metabolism and conidiation. Fungal Genet. Biol. 45:705-718. https://doi.org/10.1016/j.fgb.2007.12.003
  27. Farmer, E. E., Almeras, E. and Krishnamurthy, V. 2003. Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Curr. Opin. Plant Biol. 6:372-378. https://doi.org/10.1016/S1369-5266(03)00045-1
  28. Goodwin, S. B., Dunkle, L. D. and Zisman, V. L. 2001. Phylogenetic analysis of Cercospora and Mycosphaerella based on the internal transcribed spacer region of ribosomal DNA. Phytopathology 91:648-658. https://doi.org/10.1094/PHYTO.2001.91.7.648
  29. Griebel, T. and Zeier, J. 2008. Light regulation and daytime dependency of inducible plant defenses in Arabidopsis: phytochrome signaling controls systemic acquired resistance rather than local defense. Plant Physiol. 147:790-801. https://doi.org/10.1104/pp.108.119503
  30. Guo, A., Reimers, P. J. and Leach, J. E. 1993. Effect of light on incompatible interactions between Xanthomonas oryzae pv oryzae and rice. Physiol. Mol. Plant Pathol. 42:413-425. https://doi.org/10.1006/pmpp.1993.1031
  31. Hanson, L. E. 2010. Genetics of Fungicide Resistance in Cercospora and Mycospharella. In: Cercospora Leaf Spot of Sugar Beet and Related Species, ed. by R. T. Lartey, J. J. Weiland, L. Panella, P. W. Crous and C. E. Windels, pp. 179-188. APS Press. St. Paul, USA.
  32. Herrera-Estrella, A. and Horwitz, B. A. 2007. Looking through the eyes of fungi: molecular genetics of photoreception. Mol. Microbiol. 64:5-15. https://doi.org/10.1111/j.1365-2958.2007.05632.x
  33. Idnurm, A. and Crosson, S. 2009. The photobiology of microbial pathogenesis. PLoS Pathogens 5:e1000470. https://doi.org/10.1371/journal.ppat.1000470
  34. Idnurm, A. and Heitman, J. 2005. Light controls growth and development via a conserved pathway in the fungal kingdom. PLoS Biol. 3:e95. https://doi.org/10.1371/journal.pbio.0030095
  35. Jerebzoff, S. 1965. Growth rhythms. In: The Fungi, ed. by G. C. Ainsworth and A. S. Sussman, vol. I, pp. 625. Academic Press, London, UK.
  36. Karpinski, S., Gabrys, H., Mateo, A., Karpinska, B. and Mullineaux, P. M. 2003. Light perception in plant disease defence signalling. Curr. Opin. Plant Biol. 6:390-396. https://doi.org/10.1016/S1369-5266(03)00061-X
  37. Latterell, F. M. and Rossi, A. E. 1983. Gray leaf spot of corn: a disease on the move. Plant Dis. 67:842-847. https://doi.org/10.1094/PD-67-842
  38. Lee, K., Dunlap, J. C. and Loros, J. J. 2003. Roles for WHITE COLLAR-1 in circadian and general photoperception in Neurospora crassa. Genetics 163:103-114.
  39. Lin, C. and Todo, T. 2005. The cryptochromes. Genome Biol. 6:220-228. https://doi.org/10.1186/gb-2005-6-5-220
  40. Lozano, J. and Sequeira, L. 1970. Differentiation of races of Pseudomonas solanacearum by a leaf infiltration technique. Phytopathology 60:833-838. https://doi.org/10.1094/Phyto-60-833
  41. Meisel, B., Korsman, J., Kloppers, F. J. and Berger, D. K. 2009. Cercospora zeina is the causal agent of grey leaf spot disease of maize in southern Africa. Eur. J. Plant Pathol. 124:577-583. https://doi.org/10.1007/s10658-009-9443-1
  42. Mian, M. A. R., Missaoui, A. M., Walker, D. R., Phillips, D. V. and Boerma, H. R. 2008. Frogeye leaf spot of soybean: A review and proposed race designations for isolates of Cercospora sojina Hara. Crop Sci. 48:14-24. https://doi.org/10.2135/cropsci2007.08.0432
  43. Nemchenko, A., Kunze, S., Feussner, I. and Kolomiets, M. 2006. Duplicate maize 13- lipoxygenase genes are differentially regulated by circadian rhythm, cold stress, wounding, pathogen infection and hormonal treatments. J. Exp. Bot. 57:3767-3779. https://doi.org/10.1093/jxb/erl137
  44. Prost, I., Dhondt, S., Rothe, G., Vicente, J., Rodriguez, M. J., Kift, N., et al. 2005. Evaluation of the antimicrobial activities of plant oxylipins supports their involvement in defense against pathogens. Plant Physiol. 139:1902-1913. https://doi.org/10.1104/pp.105.066274
  45. Purschwitz, J., Muller, S., Kastner, C. and Fischer, R. 2006. Seeing the rainbow: light sensing in fungi. Curr. Opin. Microbiol. 9:566-571. https://doi.org/10.1016/j.mib.2006.10.011
  46. Purschwitz, J., Muller, S., Kastner, C., Schöser, M., Haas, H., Espeso, E. A., Atoui, A., Calvo, A. M. and Fischer, R. 2008. Functional and physical interaction of blue- and red light sensors in Aspergillus nidulans. Curr. Biol. 18:1-5. https://doi.org/10.1016/j.cub.2007.11.056
  47. Roden, L. C. and Ingle, R. A. 2009. Lights, rhythms, infection: The role of light and the circadian clock in determining the outcome of plant-pathogen interactions. Plant Cell 21:2546-2552. https://doi.org/10.1105/tpc.109.069922
  48. Rosahl, S. and Feussner, I. 2004. Oxylipins. In: Plant lipids: Biology, utilisation and manipulation, ed. by D. J. Murphy, pp. 329-354. Oxford: Blackwell Publisher.
  49. Ruiz-Roldan, M. C., Garre, V., Guarro, J., Marine, M. and Roncero, M. I. 2008. Role of the white collar 1 photoreceptor in carotenogenesis, UV resistance, hydrophobicity, and virulence of Fusarium oxysporum. Eukaryot. Cell 7:1227-1230. https://doi.org/10.1128/EC.00072-08
  50. Rupe, J. C., Siegel, M. R. and Hartmann, J. R. 1982. Influence of environment and plant maturity on gray leaf spot of corn caused by Cercospora zeae-maydis. Phytopathology 72:1587-1591. https://doi.org/10.1094/Phyto-72-1587
  51. Shim, W. and Dunkle, L. D. 2003. CZK3, A map kinase kinase kinase homolog in Cercospora zeae-maydis, regulates cercosporin biosynthesis, fungal development, and pathogenesis. Mol. Plant-Microbe Interact. 16:760-768. https://doi.org/10.1094/MPMI.2003.16.9.760
  52. Shimazaki, K., Doi, M., Assmann, S. M. and Kinoshita, T. 2007. Light regulation of stomatal movement. Annu. Rev. Plant Biol. 58:219-247. https://doi.org/10.1146/annurev.arplant.57.032905.105434
  53. Tehon, L. R. and Daniels, E. 1925. Notes on the parasitic fungi of Illinois. Mycologia 17:240-249. https://doi.org/10.2307/3753890
  54. Upchurch, R. G., Walker, D. C., Rollins, J. A., Ehrenshaft, M. and Daub, M. E. 1991. Mutants of Cercospora kikuchii altered in cercosporin synthesis and pathogenicity. Appl. Environ. Microbiol. 57:2940-2945.
  55. Veluchamy, S. and Rollins, J. A. 2008. A CRY-DASH-type photolyase/cryptochrome from Sclerotinia sclerotiorum mediates minor UV-A-specific effects on development. Fungal Genet. Biol. 45:1265-1276. https://doi.org/10.1016/j.fgb.2008.06.004
  56. Wang, J., Levy, M. and Dunkle, L. D. 1998. Sibling species of Cercospora associated with gray leaf spot of maize. Phytopathology 88:1269-1275. https://doi.org/10.1094/PHYTO.1998.88.12.1269
  57. Ward, J. M. J., Stromberg, E. L., Nowell, D. C. and Nutter, F. W. 1999. Grey leaf spot, a disease of global importance in maize production. Plant Dis. 83:884-895. https://doi.org/10.1094/PDIS.1999.83.10.884
  58. Waschuk, S. A., Bezerra, A. G. Jr., Shi, L. and Brown, L. S. 2005. Leptosphaeria rhodopsin: bacteriorhodopsin-like proton pump from a eukaryote. Proc. Natl. Acad. Sci. USA 102:6879-6883. https://doi.org/10.1073/pnas.0409659102
  59. Weiland, J. and Koch, G. 2004. Sugarbeet leaf spot disease (Cercospora beticola Sacc.). Mol. Plant Pathol. 5:157-166. https://doi.org/10.1111/j.1364-3703.2004.00218.x
  60. You, B. J., Lee, M. H. and Chung, K. R. 2008. Production of cercosporin toxin by the phytopathogenic Cercospora fungi is affected by diverse environmental signals. Can. J. Microbiol. 54:259-269. https://doi.org/10.1139/W08-002

Cited by

  1. The White Collar Complex Is Involved in Sexual Development of Fusarium graminearum vol.10, pp.3, 2015, https://doi.org/10.1371/journal.pone.0120293
  2. Systems genetics reveals a transcriptional network associated with susceptibility in the maize-grey leaf spot pathosystem vol.89, pp.4, 2017, https://doi.org/10.1111/tpj.13419